Skip to main content

Water Isotopes, Carbon Exports, and Landscape Evolution in the Vadu Crişului Karst Basin of Transylvania, Romania

  • Conference paper
  • First Online:
Book cover Eurokarst 2018, Besançon

Part of the book series: Advances in Karst Science ((AKS))

Abstract

The karst aquifer connecting meteoric recharge entering Bătrânului Cave on the Zece Hotare karst plateau to spring discharge arising from Vadu Crișului Cave along the Crișul Repede River provides one glimpse into aquifer processes and landscape evolution occurring in the Pădurea Craiului Mountains of Transylvania. One part of this investigation looks at the stable isotopes of oxygen (δ18O) and hydrogen (δ2H) measured in samples of precipitation, surface runoff, and spring water collected between October 2016 and June 2017. The second part of the investigation considers field chemistry, discrete samples, and continuous monitoring data collected between October 2016 and December 2017 and evaluates dissolved inorganic carbon (DIC), particulate inorganic carbon (PIC), total suspended sediments (TSS), and dissolved organic carbon (DOC) in water entering and emerging from the karst aquifer. Direct meteoric recharge accounts for 4–13% of observed discharge; most recharge enters the karst basin through infiltration into dolines and epikarst on the karst plateau. The local meteoric water line (δ2H = 7.50 · δ18O + 5.17) exhibits significant variation and seasonally shifts between recycled continental moisture (Dex > 10‰) during the fall and winter and marine-sourced moisture during the spring and summer (Dex < 10‰). In contrast, samples from Bătrânului Cave and Vadu Crișului have a homogenous isotope chemistry with a local water line of δ2H = 7.52 · δ18O + 6.00. The stability in water chemistry at Vadu Crișului is also seen in most other analytes. Monitoring data, however, demonstrates significant perturbations driven by storm events. The annual flux of DIC from this karst basin is from 1.37 × 105 to 1.64 × 105 kg/year. The annual flux of carbon increases by 12–22% when considering added contributions of DOC. Storm events do have a significant impact on mechanical and chemical processes operating in the karst basin; the addition of PIC and TSS flux increases landscape erosion rates by 1.1–1.2% and 7.9–8.3%, respectively, above the denudation rate computed by DIC alone (36.5–56.9 mm/ka). This illustrates the contributions of mechanical erosion in karst landscapes, particularly in high discharge conditions, when the flux of suspended sediments outpaces dissolved solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks, S.M., 2018. Karst processes, isotopic analysis, and contributions to global carbon cycle modeling from the Vadu Crisului karst basin, Romania. MS Thesis, Ball State University, Muncie, Indiana, 82 p.

    Google Scholar 

  • Bojar A-V, Ottner F, Bojar H-P, Grigorescu D, Perşoiu A (2009) Stable isotope and mineralogical investigations on clays from the Late Cretaceous sequences, Haţeg Basin, Romania. Applied Clay Science 45:155–163. https://doi.org/10.1016/j.clay.2009.04.005

    Article  Google Scholar 

  • Clark, I., Fritz, P., 1997. Environmental isotopes in Hydrogeology: Lewis Publishers. New York, 352 p.

    Google Scholar 

  • Covington, M.D., Gulley, J.D., Gabrovšek, M., 2015. Natural variations in calcite dissolution rates in streams: Controls, implications, and open questions. Geophysical Research Letters 42, pp. 2,836–2,842. https://doi.org/10.1002/2015GL063044.

    Article  Google Scholar 

  • Cozma A, Baciu C, Papp DC, Roșian G, Pop CI. 2017. Isotopic composition of precipitation in western Transylvania (Romania) reflected by two local meteoric water lines. Carpathian journal of earth and environmental sciences 12 (2):357–364.

    Google Scholar 

  • Craig H. 1961. Isotopic variations in meteoric waters. Science 133 (3465):1702–1703.

    Article  Google Scholar 

  • Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus 16, 436–468.

    Article  Google Scholar 

  • Doctor, D.H., Alexander, E.C., Petrič, M., Kogovšek, J., Urbanc, J., Lojen, S., Stichler, W., 2006. Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeology Journal 14(7), 1171–1191.

    Article  Google Scholar 

  • Dreiss, S., 1982. Linear Kernels for Karst Aquifers. Water Resources Research, 18(4), pp. 865–876.

    Article  Google Scholar 

  • Dreybrodt, W., Gabrovsek, F., Romanov, D., 2005. Processes of Speleogenesis: A Modeling Approach. Karst Research Institute, ZRC SAZU, Postojna.

    Google Scholar 

  • Dreybrodt, W., 1988. Processes in Karst Systems. Physics, Chemistry, and Geology. Springer, Berlin, 288 pp.

    Book  Google Scholar 

  • Florea, L.J. 2013. Selective recharge and isotopic composition of shallow groundwater within temperate, epigenetic carbonate aquifers. Journal of Hydrology 489: 201–213. https://doi.org/10.1016/j.jhydrol.2013.03.008

    Article  Google Scholar 

  • Florea, L.J., 2015. Carbon flux and landscape evolution in epigenic karst aquifers modeled from geochemical mass balance. Earth Surface Processes and Landforms 40(8), pp. 1,072–1,087. https://doi.org/10.1002/esp.3709

    Article  Google Scholar 

  • Florea, L.J., Banks, S.M., Forray, F.L., 2018. Importance of suspended sediments and dissolved organic carbon to carbon exports in karst–the Vadu Crişului karst basin in the Pădurea Craiului Mountains, Romania. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2018.04.015.

  • Ford, D.C., Williams, P.W., 2007. Karst Geomorphology and Hydrogeology. John Wiley & Sons, 562 pp.

    Google Scholar 

  • Gardner, T.W., Jorgensen, D.W., Shuman, C., Lemieux, C.R., 1987. Geomorphic and tectonic process rates: Effects of measured time interval. Geology 15(3), pp. 259–261. https://doi.org/10.1130/0091-7613(1987)15%3c259:gatpre%3e2.0.co;2.

    Article  Google Scholar 

  • Garrels, R.M., Christ, C.M., 1965. Solutions, Minerals, and Equillibria. Harpers’ Geoscience Series. Harper and Row, New York, 450 pp.

    Google Scholar 

  • Gat J.R., Matsui E., 1991. Atmospheric water balance in the Amazon Basin: an isotopic evapo-transpiration model. Journal of Geophysical Research 96, 179–188.

    Article  Google Scholar 

  • Giustini F, Brilli M, Patera A. 2016. Mapping oxygen stable isotopes of precipitation in Italy. Journal of Hydrology: Regional Studies 8:162–181. https://doi.org/10.1016/j.ejrh.2016.04.001.

    Article  Google Scholar 

  • Goran, C., 1982. Catalogul sistematic al peşterilor din România 1981 (Systematic catalog of caves in Romania) Consiliul Naţional pentru Educaţie Fizică şi Sport, Bucureşti, 496 pp.

    Google Scholar 

  • Herman, E.K., Toran, L., White, W.B., 2008. Threshold events in spring discharge: Evidence from sediment and continuous water level measurement. Journal of Hydrology 351(1–2), pp. 98–106. https://doi.org/10.1016/j.jhydrol.2007.12.001.

    Article  Google Scholar 

  • Hobbs, S.L., Smart, P.L., 1986. Characterisation of carbonate aquifers: a conceptual base. In Proceedings of the Environmental Problems in Karst Terranes and Their Solutions Conference. National Water Well Association, Dublin OH, pp. 1–14, (Vol. 1986).

    Google Scholar 

  • IAEA/WMO. 2018. Global network of isotopes in precipitation. The GNIP Database. Accessible at: http://www.iaea.org/water.

  • Kolka, R., Weisbarnpel, P., Froberg, M., 2008. Measurement and importance of Dissolved Organic Carbon. Field measurements of forest Carbon monitoring, pp. 171–176.

    Google Scholar 

  • Krawczyk, W.E., Ford, D.C., 2006. Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surface Processes and Landforms 31(2), pp. 221–34.

    Article  Google Scholar 

  • Liu, Z., Tian, L., Yao, T., Yu, W., 2008. Seasonal Deuterium Excess in Nagqu Precipitation: Influence of Moisture Transport and Recycling in the Middle of Tibetan Plateau. Environmental Geology 55(7), 1501–1506.

    Article  Google Scholar 

  • Merlivat, L., Jouzel, J. 1979. Global Interpretation of the Deuterium-Oxygen 18 Relationship for Precipitation. Journal of Geophysical Research 84, 5029–5033.

    Article  Google Scholar 

  • Newson, M.D., 1971. A model of subterranean limestone erosion in the British Isles based on hydrology. Transactions of the Institute of British Geographers, pp. 55–70.

    Google Scholar 

  • Observatoire Hydro-Géochimique de l’Environnement (OHHE), 2017. http://ohge.unistra.fr, data accessed October 17, 2017.

  • Onac, B.P., 1996. Mineralogy of speleothems from caves in the Padurea Craiului Mountains (Romania), and their palaeoclimatic significance Cave and Karst Science 23, pp. 109–120.

    Google Scholar 

  • Orăşeanu, I., 1991. Hydrogeological map of the Pădurea Craiului Mountains (Romania). Theoretical and Applied Karstology 4, pp. 97–127.

    Google Scholar 

  • Orășeanu I, Jurkiewicz A. 1987. Hydrological karst systems in Pădurea Craiului Mountains. Theoretical and Applied Karstology 3:215–222.

    Google Scholar 

  • Orășeanu, I., Jurkiewicz, A., (Eds.), 2010. Karst hydrogeology of Romania. Belvedere Publishing House, Oradea, 444 pp.

    Google Scholar 

  • Palmer, A.N., 2007. Cave Geology. Cave Books: Dayton, Ohio, 454 pp.

    Google Scholar 

  • Papp, D.C., Cociuba, I., Lazăr, D.F., 2013. Carbon and oxygen-isotope stratigraphy of the Early Cretaceous carbonate platform of Pădurea Craiului (Apuseni Mountains, Romania): A chemostratigraphic correlation and paleoenvironmental tool. Applied Geochemistry 32, pp. 3–16. https://doi.org/10.1016/j.apgeochem.2012.09.005.

    Article  Google Scholar 

  • Paylor, R.L., 2016. Particulate inorganic carbon flux and sediment transport dynamics in karst: Significance to landscape evolution and the carbon cycle. Ph.D. thesis, Louisiana State University.

    Google Scholar 

  • Perşoiu A, Bojar AV, Onac BP. 2007. Stable isotopes in cave ice: what do they tell us? Studia UBB Geologia 52 (1):59–62.

    Google Scholar 

  • Plummer, L.N., Busenberg, E., 1982. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta 46(6), pp. 1,011–1,040. https://doi.org/10.1016/0016-7037(82)90056-4.

    Article  Google Scholar 

  • Priesnitz, K., 1974. Lösungsraten und ihre geomorphologische Relevanz. Abh. Akad. Wiss. Göttingen, Mathematisch-Physikalische Klasse 3. Folge 29: 68084.

    Google Scholar 

  • Rusu, T., 1981. Les drainages souterraines de Monts Pãdurea Craiului. Travaux de l’Institut de Spéologie “Émile Racovitza” XX, pp. 187–205.

    Google Scholar 

  • Scanlon, B.R., 1989. Physical controls on hydrochemical variability in the inner bluegrass karst region of central Kentucky. Groundwater, 27(5), pp. 639–646.

    Article  Google Scholar 

  • Spinoni, J., Naumann, G., Vogt, J.V., Barbosa, P., 2015. The biggest drought events in Europe from 1950 to 2012. Journal of Hydrology: Regional Studies 3, pp. 509–524. https://doi.org/10.1016/j.ejrh.2015.01.001.

    Article  Google Scholar 

  • Vălenaş, L., Iurkiewicz, A., 1980–1981. Studiul complex al carstului din zona Suncuiuş-Mişid (Munţii Pădurea Craiului). Nymphaea VIII–IX, pp. 311–378.

    Google Scholar 

  • Viehmann, I., Pleşa, C., Rusu, T., 1964. Peştera de la Vadul Crişului. Lucr. Inst. Speol. E. Racoviţă, Bucureşti III, pp. 49–81.

    Google Scholar 

  • Wassenaar LI, Coplen T, Aggarwal PK. 2013. Approaches for achieving long-term accuracy and precision of δ18O and δ2H for waters analyzed using laser absorption spectrometers. Environ Sci Technol 48 (2):1123–1131. https://doi.org/10.1021/es403354n.

    Article  Google Scholar 

  • Wassenaar LI, Terzer-Wassmuth S, Douence C, Araguas-Araguas L, Aggarwal PK, Coplen TB. 2018. Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio and laser-absorption spectrometry. Rapid communications in mass spectrometry: RCM 32 (5):393–406. https://doi.org/10.1002/rcm.8052.

    Article  Google Scholar 

  • White, W.B., 1988. Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464 pp.

    Google Scholar 

Download references

Acknowledgements

Financial support provided by the Fulbright Scholar Program and the Romanian-U.S. Fulbright Commission. Site Natura 2000 Defileul Crișului Repede—Pădurea Craiului (ROSCI0062) and Speleological Heritage Committee granted permission to collect samples from Bătrânului and Vadu Crişului Caves. The δ18O and δ2H analyses were carried out on equipment funded by the Integrated Network of Interdisciplinary Research-RICI grant no. 6/PM/I 2008 (MECS—ANCS) from Capacities Program Module I—Investment in Research and Infrastructure Development at Babeș-Bolyai University. Gregory Druschel of IUPUI and Michael Purdue and Eric Lange of BSU provided laboratory access and training. Colleagues at the Indiana Geological and Water Survey, the editors of this volume, and three anonymous reviewers improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Florea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Florea, L., Forray, F.L., Banks, S.M. (2020). Water Isotopes, Carbon Exports, and Landscape Evolution in the Vadu Crişului Karst Basin of Transylvania, Romania. In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_4

Download citation

Publish with us

Policies and ethics