Skip to main content

Karst and Vegetation: Biodiversity and Geobotany in the Sierra de las Nieves Karst Aquifer (Málaga, Spain)

  • Conference paper
  • First Online:
Eurokarst 2018, Besançon

Abstract

The Sierra de las Nieves karst system is a high-relief Mediterranean karst that hosts important botanical diversity, including the unique Spanish fir Abies pinsapo. Vegetation is mainly controlled by the soil development and climatic conditions. In turn, the soil is controlled by lithology, fracturing, weathering and slope. There is also positive of soil and vegetation feedback in the epikarst development. This study focuses on the spatial variability of vegetation in a karst massif and its relationship with the main lithologies, karst depressions, fracturation density and slope. Contingency analysis shows degrees of association between the plant species studied and the other parameters. Thus, plant species preferences have been found for certain lithologies, degree of fracture development, karst depressions of ground slope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atalay I (1988) Karstification and ecology of the karstic terrains of the Taurus Mountains in Turkey. Bulletin of Geomorphology. 16: 1–8.

    Google Scholar 

  • Atalay I (1991) Soil forming in the karstin terrains of Turkey. Bulletin of Geomofphology. 19: 139–144.

    Google Scholar 

  • Atalay I (1997) Red Mediterranean soils in some karstic regions of taurus mountains, Turkey. Catena. 3–4: 247–260.

    Article  Google Scholar 

  • Bakalowicz M (2012) Epikarst. In: White, W.B., Culver, D.C. (Eds.), Encyclopaedia of Caves, (second edition). Academic Press, 284–288.

    Google Scholar 

  • Bakalowicz M (2004) The epikarst. The skin of karst. In: Jones, W.K., Culver, D.C. & Herman, J.S. (Eds.) – Epikarst. Special Publication 9. Charles Town, WV: Karst Waters Institute: 16–22.

    Google Scholar 

  • Ball GH, Hall DJ (1965) Isodata: a method of data analysis and pat-tern classification. Stanford Research Institute. Menlo Park. United States. Office of Naval Research. Information Sciences Branch.

    Google Scholar 

  • Barany-Kevei I, Horváth A (1996) Survey of the interaction between soil and vegetation in a karst ecological system at Aggtelek, Hungary. Acta Geogr. Szegediensis. XXXV: 81–87.

    Google Scholar 

  • Cabezudo-Artero B, Pérez-Latorre A, Navas-Fernández P, Gil-Jiménez Y, Navas-Fernández D (1998) Parque Natural de la Sierra de las Nieves “cartografía y evaluación de la flora y vegetación. Junta de Andalucía, 367 pp.

    Google Scholar 

  • Efe R (2014) Ecological properties of vegetation formations on karst terrains in the central Taurus Mountains (Southern Turkey). The 3rd International Geography Symposium-GEOMED2013. Procedia-Social and Behavio Scien. 120: 673–679.

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst Hydrogeology and Geomorphology. John Wiley and Sons, Chichester, UK, 562 pp.

    Book  Google Scholar 

  • IGME (2015). Cartografía geológica de España. http://info.igme.es/cartografiadigital/datos/geode/docs/GEOL_INFO.pdf.

  • Junta de Andalucía (JA) (2017) Environmental and Land Planning Counseling. http://www.juntadeandalucia.es/medioambiente/site/rediam/menuitem.04dc44281e5d53cf8ca78ca731525ea0/?vgnextoid=937b60e749e0a210VgnVCM2000000624e50aRCRD&vgnextchannel=36faa7215670f210VgnVCM1000001325e50aRCRD&vgnextfmt=rediam&lr=lang_es.

  • Journel AG, Huijbregts Ch (1978) Mining geostatistics. Academic Press, New York, 600 pp.

    Google Scholar 

  • Klimchouk AB (2004) Towards defining, delimiting and classifying epikarst: its origin, processes and variants of geomorphic evolution. In: Jones WK, Culver DC, Herman JS (Eds.), Epikarst. Special Publication 9. Charles Town, WV, Karst Waters Institute, pp. 23–35.

    Google Scholar 

  • Liang Y, He X, Chen C, Feng S, Liu L, Chen X, Zhao Z, Su Y (2015). Influence of plant communities and soil properties during natural vegetation restoration on arbuscular mycorrhizal fungal communities in a karst region. Ecological Engineering. 82: 57–65.

    Article  Google Scholar 

  • Liang Y, Pan F, He X, Chen X, Su Y (2016) Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region. Environ Sci Pollut Res. 23:18482–18491.

    Article  Google Scholar 

  • Liu C, Liu Y, Guo K, Wang S, Liu, H, Zhao H, Qiao X, Hou D, Li S (2016) Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agriculture, Ecosystems and Environment. 235: 91–100.

    Article  Google Scholar 

  • Lu X, Toda H, Ding F, Fang S, Yang W, Xu H (2014) Effect of vegetation types on chemical and biological properties of soils of karst ecosystems. Eur Jour of Soil Biol. 61: 49–57.

    Article  Google Scholar 

  • Lunetta RS, Balogh ME (1999) Application of Multi-Temporal Landsat 5 TM Imagery for Wetland Identification. Photogrammetric Engineering & Remote Sensing 65: 1303–1310.

    Google Scholar 

  • Martín-Algarra A (1987) Evolución geológica Alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética (Sector Occidental). Tesis Doctoral. Universidad de Granada, 1171 pp.

    Google Scholar 

  • Oetter DR, Cohen WB, Berterretche M, Maiersperger TK, Kennedy RE (2001) Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data. Remote Sensing of Environment 76: 139–155.

    Article  Google Scholar 

  • Pardo-Igúzquiza E, Durán JJ, Luque-Espinar JA, Robledo-Ardila PA, Martos-Rosillo S, Guardiola-Albert C, Pedrera A (2015) Karst massif susceptibility from rock matrix, fracture and conduit porosities: a case study of the Sierra de las Nieves (Málaga, Spain). Environmental Earth Sciences 74: 7583–7592.

    Article  Google Scholar 

  • Pedrera A, Luque-Espinar JA, Martos-Rosillo S, Pardo-Igúzquiza E, Durán-Valsero JJ, Martínez-Moreno F, Guardiola-Albert C (2015) Structural controls on karstic conduits in a collisional orogeny (Sierra de las Nieves, Betic Cordillera, S Spain). Geomorphology 238: 15–26.

    Article  Google Scholar 

  • Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C (2012) Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sensing of Environment 121: 93–107.

    Article  Google Scholar 

  • Rouse JW, Haas RW, Schell JA, Deering DH, Harlan JC (1974) Monitoring the vernal advancement and retrogradation (Greewave effect) of natural vegetation, Greebelt, MD. USA, NASA/GSFC.

    Google Scholar 

  • Shen LN, Deng XH, Jiang ZC, Li T (2013) Hydrogeochemical effects of an epikarst ecosystem: case study of the Nongla Landiantang Spring catchment. Env Earth Scien. 68 (3): 667–677.

    Article  Google Scholar 

  • Spiegel MR (1998) Schaum’s Outline of Statistics. McGraw Hill, New York, 600 pp.

    Google Scholar 

  • Tonga X, Wanga K, Yue Y, Brandt M, Liu B, Zhang C, Liao C, Fensholt R (2017) Quantifying the effectiveness of ecological restoration projects onlong-term vegetation dynamics in the karst regions of Southwest China. Inter J of Applied Earth Obser and Geoinf. 54: 105–113.

    Article  Google Scholar 

  • Williams PW (1983). The role of the subcutaneous zone in karst hydrology. J Hydrol. 61: 45–67.

    Article  Google Scholar 

  • Williams PW (2008) The role of the epikarst in karst and cave hydrogeology: a review. Int. J. Speleol. 37, 1–10.

    Article  Google Scholar 

  • Wolter PT, Mladenoff, D.J., Host, G.E., G.E., & T.R. (1995) Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering & Remote sensing, 61, 1129–1143.

    Google Scholar 

  • Yuan F, Bauer ME, Heinert NJ, Holden G (2005) Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM + data. Geocarto International 20: 5–14.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by project CGL2015-71510-R (Ministerio de Economía, Industria y Competitividad of Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Luque-Espinar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luque-Espinar, J.A., Pardo-Igúzquiza, E., Rodríguez-Galiano, V.F., Chica-Olmo, M., de la Vega-Panizo, R. (2020). Karst and Vegetation: Biodiversity and Geobotany in the Sierra de las Nieves Karst Aquifer (Málaga, Spain). In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_2

Download citation

Publish with us

Policies and ethics