Skip to main content

Laboratory Experiments for Calibrating Flow Exchange Coefficient of MODFLOW CFP1

  • Conference paper
  • First Online:

Part of the book series: Advances in Karst Science ((AKS))

Abstract

A sandbox device was developed to test MODFLOW CFP1 under various conditions. The experiment represents a three-dimensional confined karst aquifer. MODFLOW CFP1 is a public-domain software developed by the US Geological Survey that is becoming popular for the simulation of karst hybrid models. Since geometry and hydraulic parameters of the matrix and conduit related to the experiments can be measured accurately, this study is focused on the flow exchange coefficient used by MODFLOW CFP1 to simulate the flow exchange between matrix and conduits of karst aquifers. The flow exchange coefficient is commonly calibrated given our limited knowledge of the underground system. In this work, we discuss the issues encountered during the calibration of this coefficient. It was found that the calibrated parameter values depend on the direction of the flow exchange something that is not considered in the current definition of this parameter. The calibration also revealed the structural inadequacy of the linear model used in MODFLOW CFP1 for simulating the flow exchange. These results are useful for further evaluation of MODFLOW CFP1 at laboratory and field scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bakker, M., V. Post, C.D. Langevin, J.D. Hughes, J.T. White, J.J. Starn, M.N. Fienen. 2016. Scripting MODFLOW model development using Python and FloPy. Groundwater, 54(5): 733–739.

    Article  Google Scholar 

  • Barenblatt, G., I.P. Zheltov, I. Kochina. 1960. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of applied mathematics and mechanics 24(5), 1286–1303.

    Article  Google Scholar 

  • Bear, J. 1972. Dynamics of fluids in porous media. Dover Publications Inc., NY.

    Google Scholar 

  • Birk, S., R. Liedl, M. Sauter, G. Teutsch. 2003. Hydraulic boundary conditions as a controlling factor in karst genesis: A numerical modeling study on artesian conduit development in gypsum. Water Resources Research, 39(1).

    Article  Google Scholar 

  • Clemens, T., D. Hückinghaus, M. Sauter, R. Liedl and, G. Teutsch. 1996. A combined continuum and discrete network reactive transport model for the simulation of karst development. Proceeding of ModelCAE96, Colorado, IAHS Pub., 309–320.

    Google Scholar 

  • Cao, Y., M. Gunzburger, F. Hua, X. Wang. 2010. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Communications in Mathematical Sciences 8(1): 1–25.

    Article  Google Scholar 

  • Davis, J. 1996. Hydraulic investigation and simulation of ground-water flow in the Upper Floridan aquifer of northcentral Florida and southwestern Georgia and delineation of contributing areas for selected City of Tallahassee, Florida, water-supply wells. U.S. Geological Survey, Water Resources Investigations Report 95-4296.

    Google Scholar 

  • Davis, J., B. Katz, D. Griffin. 2010. Nitrate-N Movement in Groundwater from the Land Application of Treated Municipal Wastewater and Other Sources in the Wakulla Springs Springshed, Leon and Wakulla Counties, Florida, 1966-2018. U.S. Geological Survey Scientific Investigations Report 2010-5099.

    Google Scholar 

  • Doherty, J. 2016. PEST model-independent parameter estimation user manual part I: PEST, SENSAN and Global Optimizers, 6th Edition. Watermark Numerical Computing.

    Google Scholar 

  • Draper, N.R., H. Smith. 1998. Applied Regression Analysis, Third Edition. John Wiley & Sons.

    Google Scholar 

  • Faulkner, J., B.X. Hu, S. Kish, F. Hua. 2009. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. Journal of contaminant hydrology 110(1): 34–44.

    Article  Google Scholar 

  • Gallegos, J.J.; B.X. Hu, H. Davis. 2013. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP. Hydrogeology Journal 21(8): 1749–1760.

    Article  Google Scholar 

  • Giese M., Reimann, T., Bailly-Comte, V., Marechal, J., Sauter, M., Geyer T. 2018. Turbulent and Laminar Flow in Karst Conduits Under Unsteady Flow Conditions: Interpretation of Pumping Tests by Discrete Conduit‐Continuum Modeling. https://doi.org/10.1002/2017WR020658.

    Article  Google Scholar 

  • Hartmann, A., N. Goldscheider, T. Wagener, J. Lange, M. Weiler. 2014. Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics 52(3): 218–242.

    Article  Google Scholar 

  • Hill, M.C., C.R. Tiedeman. 2007. Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons.

    Google Scholar 

  • Hill, M.E. 2008. Conduit conceptualizations and model performance. PhD dissertation, Department of Geology, University of South Florida, Tampa.

    Google Scholar 

  • Hill, M.E., M.T. Stewart, A. Martin. 2010. Evaluation of the MODFLOW-2005 Conduit Flow Process. Groundwater 48(4): 549–559.

    Article  Google Scholar 

  • Hu, X., X. Wang, M. Gunzburger, F. Hua, Y. Cao. 2012. Experimental and computational validation and verification of the Stokes–Darcy and continuum pipe flow models for karst aquifers with dual porosity structure. Hydrological Processes 26(13): 2031–2040.

    Article  Google Scholar 

  • Jeannin, P. 2001. Modeling flow in phreatic and epiphreatic karst conduits in the Hцlloch cave (Muotatal, Switzerland). Water Resources Research 37(2): 191–200.

    Article  Google Scholar 

  • Karay, G., G. Hajnal. 2015. Modelling of Groundwater Flow in Fractured Rocks. Procedia Environmental Sciences 25: 142–149.

    Article  Google Scholar 

  • Kovacs, A., M. Sauter. 2007. Modelling karst hydrodynamics. In: Methods in karst hydrogeology, N. Goldscheider, D. Drew, ed., Taylor & Francis, 201–222.

    Google Scholar 

  • Kuniansky, E., J. Gallegos, J. Davis. 2011. Comparison of Three Model Approaches for Spring Simulation, Woodville Karst Plain, Florida. In: Karst Interest Group Proceedings, Fayetteville, Arkansas, April 26–29, U.S. Geological Survey Scientific Investigations Report 2011-5031, 169–170.

    Google Scholar 

  • Kuniansky, E.L. 2014. Taking the mystery out of mathematical model applications to karst aquifers - A primer. In: Karst Interest Group Proceedings, E.L. Kuniansky, L.E. Spangler, eds., Carlsbad, New Mexico, April 29–May 2, U.S. Geological Survey Scientific Investigations Report 2014–5035: 69–81.

    Google Scholar 

  • Lu, D., M. Ye, M.C. Hill. 2012. Analysis of regression confidence intervals and Bayesian credible intervals for uncertainty quantification. Water Resour. Res., 48.

    Google Scholar 

  • Mikzewski A., Kresic N. 2015. Chapter 10. Mathematical Modeling of Karst Aquifers. In Karst Aquifers—Characterization and Engineering, Stevanovic Z. (ed.). Springer International Publishing.

    Google Scholar 

  • Pacheco, R. 2017. Statistical analysis of karst aquifer pollution, karst flow model validation at laboratory scale, and development of seepage meter. Ph.D. dissertation, Florida State University.

    Google Scholar 

  • Poeter, E.P., M.C, Hill, E.R. Banta, S. Mehl, S. Christensen. 2005, CODE_2005 and Six Other Computer Codes for Universal Sensitivity Analysis, Calibration, and Uncertainty Evaluation. U.S. Geological Survey, Techniques and Methods 6-A11.

    Google Scholar 

  • Poeter, E.P., M.C. Hill, D. Lu, C.R. Tiedeman, S. Mehl. 2014. UCODE_2014, with new capabilities to define parameters unique to predictions, calculate weights using simulated values, estimate parameters with SVD, evaluate uncertainty with MCMC, and more. Integrated Groundwater Modeling Center Report Number GWMI 2014-02.

    Google Scholar 

  • Reimann, T., Rehrl, C., Shoemaker, W. B., Geyer, T., & Birk, S. (2011). The significance of turbulent flow representation in single‐continuum models. Water Resources Research, 47(9).

    Google Scholar 

  • Saller, S.P., M.J. Ronayne, A.J. Long. 2013. Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeology Journal 21(7): 1555–1566.

    Article  Google Scholar 

  • Sauter, M. 1992. Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW. Germany). Tubinger Geowissenschaftliche Arbeiten, Part C (13).

    Google Scholar 

  • Scanlon, B.R., R.E. Mace, M.E. Barrett, B. Smith. 2003. Can we simulate regional groundwater flow in a karst system using equivalent porous media models. Case study, Barton Springs Edwards aquifer, USA. Journal of hydrology 276(1): 137–158.

    Article  Google Scholar 

  • Shoemaker, W., E.L. Kuniansky, S. Birk, S. Bauer, E.D. Swain. 2008. Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005. U.S. Geological Survey, Techniques and Methods, Book 6, Chapter A24.

    Google Scholar 

  • Wang, X. 2010. On the coupled continuum pipe flow model (CCPF) for flows in karst aquifer. Discrete and continuous dynamical systems-series B 13(2): 489–501.

    Article  Google Scholar 

  • Xu, Z., and B. X. Hu (2017), Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system, Water Resour. Res., 53, https://doi.org/10.1002/2016wr018758.

    Article  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Fulbright Scholarship for his dissertation research at the Florida State University. The laboratory experiment was supported by a travel grant from the Hohai University. The second author was supported in part by National Science Foundation grant EAR-1828827.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger B. Pacheco Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pacheco Castro, R.B., Ye, M., Tao, X., Wang, H., Zhao, J. (2020). Laboratory Experiments for Calibrating Flow Exchange Coefficient of MODFLOW CFP1. In: Bertrand, C., Denimal, S., Steinmann, M., Renard, P. (eds) Eurokarst 2018, Besançon. Advances in Karst Science. Springer, Cham. https://doi.org/10.1007/978-3-030-14015-1_18

Download citation

Publish with us

Policies and ethics