Skip to main content

Information System for Computer-Aided Fixture Design

  • Chapter
  • First Online:
Industry 4.0: Trends in Management of Intelligent Manufacturing Systems

Abstract

Computer-aided fixture design system is one of the elements of computer integrated manufacturing. It allows to implement the life cycle of fixtures from design stage to its manufacturing, using the geometric modeling and engineering analysis, process planning and automation of the manufacturing. With the aim to increase the productivity and quality of the production process, the CAFD system was developed. It consists of several main modules and they directly execute all the operating procedures. One of such module is aimed at organizing of the user’s work with the information system for fixture design process. This model determines the list of the stages and their order, establishes the informational and other relationships between them. All information for fixture design were grouped to 15 categories and include information about the fixture elements, workpiece, production conditions, and other auxiliary information. The interface of the system is made according to the MDI-application technology for ensuring the access to the auxiliary information throughout the operating process. The physical database model is realized by the open source relational database management system MySQL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, H., & Rong, Y. (2008). Case based reasoning method for computer aided welding fixture design. Computer-Aided Design, 40(12), 1121–1132. https://doi.org/10.1016/j.cad.2008.11.001.

    Article  Google Scholar 

  2. Li, W., Li, P., & Rong, Y. (2002). Case-based agile fixture design. Journal of Materials Processing Technology, 128(1–3), 7–18. https://doi.org/10.1016/S0924-0136(02)00009-2.

    Article  Google Scholar 

  3. Roy, U., & Liao, J. (1999). Geometric reasoning for re-allocation of supporting and clamping positions in the automated fixture design system. IIE Transactions, 31(4), 313–322. https://doi.org/10.1023/A:1007609214097.

    Article  Google Scholar 

  4. Krishnakumar, K., & Melkote, S. N. (2000). Machining fixture layout optimization using the genetic algorithm. International Journal of Machine Tools and Manufacture, 40(4), 579–598. https://doi.org/10.1016/S0890-6955(99)00072-3.

    Article  Google Scholar 

  5. Kaya, N. (2006). Machining fixture locating and clamping position optimization using genetic algorithms. Computers in Industry, 57(2), 112–120. https://doi.org/10.1016/j.compind.2005.05.001.

    Article  Google Scholar 

  6. Hatzilygeroudis, I., & Prentzas, J. (2004). Integrating (rules, neural networks) and cases for knowledge representation and reasoning in expert systems. Expert Systems with Applications, 27(1), 63–75. https://doi.org/10.1016/j.eswa.2003.12.004.

    Article  MATH  Google Scholar 

  7. Venugopal, V., & Narendran, T. (1992). Neural network model for design retrieval in manufacturing systems. Computers in Industry, 20(1), 11–23. https://doi.org/10.1016/0166-3615(92)90124-6.

    Article  Google Scholar 

  8. Zhou, Y., Li, Y., & Wang, W. (2011). A feature-based fixture design methodology for the manufacturing of aircraft structural parts. Robotics and Computer-Integrated Manufacturing, 27(6), 986–993. https://doi.org/10.1016/j.rcim.2011.05.002.

    Article  Google Scholar 

  9. Roy, U., & Liao, J. (1998). Application of a blackboard framework to a cooperative fixture design system. Computers in Industry, 37(1), 67–81. https://doi.org/10.1016/S0166-3615(98)00068-2.

    Article  Google Scholar 

  10. Chen, C., Wu, T., & Occena, L. G. (2002). Knowledge organisation of product design blackboard systems via graph decomposition. Knowledge-Based Systems, 15(7), 423–435. https://doi.org/10.1016/S0950-7051(02)00030-8.

    Article  Google Scholar 

  11. Medsker, K., & Medsker, L. (1987). Instructional technology: a key to successful information systems. Information and Management, 12, 195–208.

    Article  Google Scholar 

  12. Kumar, A., Subramaniam, V., & Teck, T. (2000). Conceptual design of fixtures using machine learning techniques. The International Journal of Advanced Manufacturing Technology, 16(3), 176–181. https://doi.org/10.1007/s001700050024.

    Article  Google Scholar 

  13. Zhang, Y., Hu, W., Rong, Y., & Yen, D. (2001). Graph-based setup planning and tolerance decomposition for computer-aided fixture design. International Journal of Production Research, 39(14), 3109–3126. https://doi.org/10.1080/00207540110056171.

    Article  MATH  Google Scholar 

  14. Padmanaban, K. P., Arulshri, K. P., & Prabhakaran, G. (2009). Machining fixture layout design using ant colony algorithm based continuous optimization method. The International Journal of Advanced Manufacturing Technology, 45(9–10), 922–934. https://doi.org/10.1007/s00170-009-2035-6.

    Article  Google Scholar 

  15. Vasundara, M., & Padmanaban, K. P. (2013). Recent developments on machining fixture layout design, analysis, and optimization using finite element method and evolutionary techniques. The International Journal of Advanced Manufacturing Technology, 70(1–4), 79–96. https://doi.org/10.1007/s00170-013-5249-6.

    Article  Google Scholar 

  16. Wu, Y., Rong, Y., Ma, W., & LeClair, S. R. (1998). Automated modular fixture planning: geometric analysis. Robotics and Computer-Integrated Manufacturing, 14(1), 1–15. https://doi.org/10.1016/S0736-5845(97)00024-0.

    Article  Google Scholar 

  17. Peng, G., Chen, G., Wu, C., et al. (2011). Applying RBR and CBR to develop a VR based integrated system for machining fixture design. Expert Systems with Applications, 38(1), 26–38. https://doi.org/10.1016/j.eswa.2010.05.084.

    Article  Google Scholar 

  18. Subramaniam, V., Senthil Kumar, A., & Seow, K. C. (2001). A multi-agent approach to fixture design. Journal of Intelligent Manufacturing, 12(1), 31–42. https://doi.org/10.1023/A:1008947413133.

    Article  Google Scholar 

  19. Hashemi, H., Shaharoun, A.M., Izman, S., Kurniawan, D. (2014). Recent developments on computer aided fixture design: case based reasoning approaches. Advances in Mechanical Engineering, 6. doi: https://doi.org/10.1155/2014/484928.

    Article  Google Scholar 

  20. Hashemi, H., Shaharoun, A. M., Izman, S., et al. (2014). Fixture design automation and optimization techniques: review and future trends. IJE Transactions B: Applications, 27(11), 1787–1794.

    Google Scholar 

  21. Selvakumar, S., Arulshri, K. P., Padmanaban, K. P., & Sasikumar, K. P. K. (2013). Design and optimization of machining fixture layout using ANN and DOE. The International Journal of Advanced Manufacturing Technology, 65(9–12), 1573–1586. https://doi.org/10.1007/s00170-012-4281-2.

    Article  Google Scholar 

  22. Subramaniam, V., Senthil Kumar, A., & Seow, K. C. (1999). Conceptual design of fixtures using genetic algorithms. The International Journal of Advanced Manufacturing Technology, 15(2), 79–84. https://doi.org/10.1007/s001700050042.

    Article  Google Scholar 

  23. Senthil Kumar, A., Subramaniam, V., & Boon Teck, T. (2000). Conceptual design of fixtures using machine learning techniques. The International Journal of Advanced Manufacturing Technology, 16(3), 176–181. https://doi.org/10.1007/s001700050024.

    Article  Google Scholar 

  24. Norenkov I. P. (2002). Fundamentals of computer-aided design. Moscow, 336 p.. [in Russian].

    Google Scholar 

  25. Ivanov, V., Vashchenko, S., Rong, Y.: Information support of the computer-aided fixture design system. In: Proceedings of 12th International Conference ICTERI’2016. (vol. 1614, pp. 73–86), CEUR-WS. Retrieved from CEUR-WS.org (2016).

  26. Ivanov, V. (2019). Process-oriented approach to fixture design. In: Ivanov V. et al. (Eds.) Advances in design, simulation and manufacturing. DSMIE-2018. Lecture notes in mechanical engineering (pp. 42–50). doi: https://doi.org/10.1007/978-3-319-93587-4_5.

    Google Scholar 

  27. CarrLane Manufacturing. (2016). Retrieved from //https://www.carrlane.com/en-us

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ivanov, V., Pavlenko, I., Vashchenko, S., Zajac, J. (2019). Information System for Computer-Aided Fixture Design. In: Knapčíková, L., Balog, M. (eds) Industry 4.0: Trends in Management of Intelligent Manufacturing Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-14011-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-14011-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-14010-6

  • Online ISBN: 978-3-030-14011-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics