Skip to main content

Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing

  • Chapter
  • First Online:
  • 629 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Abstract

As a feature sensitive meshing investigation, this paper focuses on beads which are tangent continuous, high curvature, raised surfaces meant to stiffen and enhance the durability and specific strength of automotive body panels. An improvised and enhanced medial axis based strategy is proposed for identifying three broad types of bead features. Appropriate boundary discretisation, inclusion of zero medial vertex case for annulus identification, medial axis topology modifications to eliminate undesirable pathologies, T-junction squaring with cubic filtering smoothing highlight some of the improvisations to the medial axis technology employed. Ridge curves representing the crest lines of the bead are extracted and inserted on the face. A combination of multi-blocking, clamping and face node-loop insertion, followed by boundary connection strategies are used to generate high fidelity, feature sensitive, quasi-structured meshes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. http://www.opel.com, Opel international – Product & Company Information, News, Experience, Excitement (2018). [online] Available at: https://www.opel.com/. Accessed 13 Jun 2018

  2. N. Amenta, S. Choi, R.K. Kolluri, The power crust. In Proc. ACM Solid Modeling, 2001, pp. 249–260

    Google Scholar 

  3. P. Li, B. Wang, F. Sun, X. Guo, C. Zhang, W. Wenping, Q-Mat: computing medial axis transform by quadratic error minimization. ACM Transactions on Graphics 35, 1–16 (2015)

    Google Scholar 

  4. F. Sun, Y.K. Choi, Y. Yu, W. Wang, Medial meshes – a compact and accurate representation of medial axis transform. IEEE Transactions on Visualization and Computer Graphics 22, 1278–1290 (2016)

    Article  Google Scholar 

  5. M. Foskey, M.C. Lin, D. Manocha, Efficient computation of a simplified medial axis. Journal of computing and information science in Engineering 4, 274–284 (2003)

    Article  Google Scholar 

  6. J. Chaussard, M. Couprie, H. Talbot, A discrete 𝜆-medial axis. Proc. 15th IAPR Int. Conf. Discrete Geometry Comput. Imagery, 2009, pp. 421–433

    Google Scholar 

  7. B. Miklos, J. Giesen, M. Pauly, Discrete scale axis representations for 3D Geometry. ACM Trans Graph. 29, 1–10 (2010)

    Article  Google Scholar 

  8. A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea, 3D skeletons: a state- of-the-art report. Eurographics 35, 1–24 (2016)

    Google Scholar 

  9. P.K. Saha, G. Borgefors, G.S. Di Baja, A survey on skeletilization algorithms and their applications. Pattern Recognition Letters 76, 3–12 (2016)

    Article  Google Scholar 

  10. C. Arcelli, G. Sanniti, L. Serino, Distance driven skeletalization in voxel images. IEEE TPAMI 33(4), 709–720 (2011)

    Article  Google Scholar 

  11. H. Xia, P.G. Tucker, Fast equal and biased distance fields for medial axis transform with meshing in mind. Journal of Applied Mathematical Modelling 35, 5804–5819 (2011)

    Article  MathSciNet  Google Scholar 

  12. D. Attali, J.D. Boissonmat, H. Edelsbrunner Stability and computation of medial axes – a state-of-the-art-review. Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, 2009, pp. 109–125

    Google Scholar 

  13. O. Aichholzer, W. Aigner, F. Aurenhammer, T. Hackl, B. Juttler, M. Rabl, Medial axis computation for planar free-form shapes. Journal of Computer Aided Design 41, 339–349 (2009)

    Article  Google Scholar 

  14. F. Buchegger, B. Juttler, M. Kapl, Total curvature variation fairing for medial axis regularization. Graphical Models 76, 633–647 (2014)

    Article  Google Scholar 

  15. J. Peng, H. Wang, J. Li, C. Song, Generation method and application of product-oriented medial axis. 6th International Conference on Logistic, Informatics and Service Science, vol. 16, 2016, pp. 160–174

    Article  MathSciNet  Google Scholar 

  16. L. Cao, L. Liu, Computation of the medial axis and offset curves of curved boundaries in the planar domain. Computer Aided Design 40, 465–475 (2008)

    Article  Google Scholar 

  17. D. Ding, Z. Pan, D. Cuiuri, H. Li, N. Larkin, Adaptive path planning for wire-feed additive manufacturing using medial axis transformation. Journal of Cleaner Production 133, 942–952 (2016)

    Article  Google Scholar 

  18. B. Durix, G. Morin, S. Chambon, Skeleton-based multiview reconstruction. IEEE International Conference on Image Processing, 2016, pp. 4947–4051

    Google Scholar 

  19. J. Yuan, A.M. Cheriyadat, Image feature based GPS trace filtering for road network generation and road segmentation. Machine and Vision Applications 27, 1–12 (2016)

    Article  Google Scholar 

  20. A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, A. Telea, 3D skeletons: a state- of-the-art report. Eurographics 35, 1–26 (2016)

    Google Scholar 

  21. Z. Yasseen, A. Verroust-Blonder, A. Nasri, Shape matching by part alignment using extended chordal axis transform. Pattern Recognition 57, 115–135 (2016)

    Article  Google Scholar 

  22. T. Tam, C. Armstrong, 2D finite element mesh generation by medial axis subdivision. Advances in Engineering Software 13, 313–324 (1991)

    MATH  Google Scholar 

  23. H.J. Fogg, C.G. Armstrong, T.T. Robinson, Enhanced medial-axis-based block-structured meshing in 2D. Journal of Computer Aided Design 72, 87–101 (2016)

    Article  Google Scholar 

  24. J.E. Makem, C.G. Armstrong, T.T. Robinson, Automatic decomposition and efficient semi- structured meshing of complex solids. Engineering with Computers 30, 345–361 (2014). https://doi.org/10.1007/s00366-012-0302-x

    Article  Google Scholar 

  25. K. Beatty, N. Mukherjee, Flattening 3D triangulations for quality surface mesh generation. Proc. 17th Int. Meshing Roundtable, 2008, pp. 125–139

    Google Scholar 

  26. J.R. Shewchuk, Triangle: engineering a 2D quality mesh generator and delaunay triangulator. Applied computational geometry towards geometric engineering, 1996, pp. 203–222

    Chapter  Google Scholar 

  27. C++ STL Containers Library. Available at: https://en.cppreference.com/w/cpp/container

  28. G.P. Bonneau, S. Hahmann. Smooth polylines on polygon meshes. Geometric modeling for scientific visualization, 2004, pp. 69–84

    Chapter  Google Scholar 

  29. N. Mukherjee, J.E. Makem, A Cartesian slab based multiblocking strategy for irregular cylindrical surfaces. Proc. 26th Int. Meshing Roundtable, 2017

    Google Scholar 

  30. J.E. Makem, N. Mukherjee, Mesh generation system and method, Patent Application WO2017040006A1, Siemens PLM Software Inc., 2015-09-01. https://patents.google.com/patent/WO2017040006A1/en

  31. N. Mukherjee, A hybrid, variational 3D smoother for orphaned shell meshes, Proc. 11th Int. Meshing Roundtable, 2002, pp. 379–390

    Google Scholar 

  32. J.E. Makem, N. Mukherjee, System and method for element quality improvement in 3d quadrilateral-dominant surface meshes. Patent Application WO2018080527A1, Siemens PLM Software Inc., 2016-10-31. https://patents.google.com/patent/WO2018080527A1/en

  33. N. Mukherjee, J.E. Makem, Fogg, H.J. A 3D constrained optimisation smoother to post- process quadrilateral meshes for body-in-white. Proc. 25th Int. Meshing Roundtable, 2016, pp. 262–275

    Article  Google Scholar 

  34. T.K. Dey, W. Zhao, Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica 38, 179–200 (2004)

    Article  MathSciNet  Google Scholar 

  35. W. Van Toll, A. Cook., M.J. Van Kreveld, R. Geraerts. The explicit corridor map: using the medial axis for real-time path planning and crowd simulation. Proceedings of the 32nd International Symposium on Computational Geometry, vol. 51. 2016, pp. 72–75

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan E. Makem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makem, J.E., Fogg, H.J., Mukherjee, N. (2019). Medial Axis Based Bead Feature Recognition for Automotive Body Panel Meshing. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_7

Download citation

Publish with us

Policies and ethics