Skip to main content

Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 127))

Abstract

An improved Lepp based, terminal triangles centroid algorithm for constrained Delaunay quality triangulation is discussed and studied. For each bad quality triangle t, the algorithm uses the longest edge propagating path (Lepp(t)) to find a couple of Delaunay terminal triangles (with largest angles less than or equal to 120) sharing a common longest (terminal) edge. Then the centroid of the terminal quadrilateral is Delaunay inserted in the mesh. Bisection of some constrained edges are also performed to assure fast convergence. We prove algorithm termination and that a graded, optimal size, 30 triangulation is obtained, for any planar straight line graph (PSLG) geometry with constrained angles greater than or equal to 30.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. F. Balboa, P. Rodriguez-Moreno, M.C. Rivara, Terminal star operations algorithm for tetrahedral mesh improvement, in Proceedings 27th International Meshing Roundtable, Albuquerque, USA (2018)

    Google Scholar 

  2. C. Bedregal, M.C. Rivara, New results on Lepp-Delaunay algorithm for quality triangulations. Procedia Eng. 124, 317–329 (2014)

    Article  Google Scholar 

  3. C. Bedregal, M.C. Rivara, Longest-edge algorithms for size-optimal refinement of triangulations. Comput. Aided Des. 46, 246–251 (2014)

    Article  Google Scholar 

  4. S.W. Cheng, T.K. Dey, J.R. Shewchuk, Delaunay Mesh Generation. CRC Computer and Information Science Series (CRC Press, Boca Raton, 2013)

    MATH  Google Scholar 

  5. H. Erten, A. Üngor, Quality triangulations with locally optimal Steiner points. SIAM J. Sci. Comput. 31, 2103–2130 (2009)

    Article  MathSciNet  Google Scholar 

  6. D.A. Field, Laplatian smoothing and Delaunay triangulations. Commun. Appl. Numer. Methods 4(6), 709–712 (1988)

    Article  Google Scholar 

  7. L.A. Freitag, On combining Laplatian and optimization-based mesh smoothing techniques. ASME Appl. Mech. Div. Publ. AMD 220, 37–44 (1997)

    Google Scholar 

  8. L.A. Freitag, C. Olliver-Gooch, Tetrahedral mesh improvement using swapping and smoothing. Int. J. Numer. Methods Eng. 40, 3979–4002 (1997)

    Article  MathSciNet  Google Scholar 

  9. C. Gutierrez, F. Gutierrez, M.C. Rivara, Complexity of the bisection method. Theor. Comput. Sci. 382(2), 131–138 (2007)

    Article  MathSciNet  Google Scholar 

  10. M.C. Rivara, New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations. Int. J. Mumer. Methods Eng. 40(18), 3313–3324 (1997)

    Article  MathSciNet  Google Scholar 

  11. M.C. Rivara, C. Calderon, Lepp terminal centroid method for quality triangulation. Comput. Aided Des. 42(1), 58–66 (2010)

    Article  Google Scholar 

  12. M.C. Rivara, N. Hitschfeld, R.B. Simpson, Terminal edges Delaunay (smallest angle based) algorithm for the quality triangulation problem. Comput. Aided Des. 33(3), 263–277 (2001)

    Article  Google Scholar 

  13. I.G. Rosenberg, F. Stenger, A lower bound on the angles of triangles constructed by bisecting the longest side. Math. Comput. 29(130), 390–395 (1975)

    Article  MathSciNet  Google Scholar 

  14. J. Ruppert, A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 18(3), 548–585 (1995)

    Article  MathSciNet  Google Scholar 

  15. J.R. Shewchuk, Triangle: engineering a 2D quality mesh generator and Delaunay triangulator, in Applied Computational Geometry, ed. by M.C. Lin, D. Manocha. Lecture Notes in Computer Science, vol. 1148 (1996), pp. 203–222

    Chapter  Google Scholar 

  16. J.R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation. Comput. Geom. 22(1–3), 21–74 (2002)

    Article  MathSciNet  Google Scholar 

  17. R.B. Simpson, M.C. Rivara, Geometrical mesh improvement properties of Delaunay terminal edge refinement, Technical report CS-2006-16, The David Cheriton School of Computer Science (University of Waterloo, Waterloo, 2006), pp. 536–544

    MATH  Google Scholar 

  18. M. Stynes, On faster convergence of the bisection method for certain triangles. Math. Comput. 33(146), 717–721 (1979)

    Article  MathSciNet  Google Scholar 

  19. M. Stynes, On faster convergence of the bisection method for all triangles. Math. Comput. 35, 1195–1201 (1980)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Work partially supported by Departamento de Ciencias de la Computación, Universidad de Chile, Departamento de Sistemas de Información, Research Group GI150115/EF, and Research Project DIUBB 172115 4/R, Universidad del Bio-Bio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Cecilia Rivara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rivara, MC., Rodriguez-Moreno, P.A. (2019). Tuned Terminal Triangles Centroid Delaunay Algorithm for Quality Triangulation. In: Roca, X., Loseille, A. (eds) 27th International Meshing Roundtable. IMR 2018. Lecture Notes in Computational Science and Engineering, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-030-13992-6_12

Download citation

Publish with us

Policies and ethics