Skip to main content

Multiaxial Fatigue Analysis of Stainless Steel Used in Marine Structures

  • Conference paper
  • First Online:
Mechanical Fatigue of Metals

Part of the book series: Structural Integrity ((STIN,volume 7))

  • 1772 Accesses

Abstract

This work investigates the fatigue behaviour under multiaxial loading conditions of 316 stainless steel commonly used in offshore and marine structures. Cylindrical hollow specimens were tested under uniaxial tensile stress, hoop stress and different combinations of tensile and hoop stresses. Both proportional and non-proportional loading were studied in the experiments. Prediction of the fatigue life was performed with Wang-Brown, Fatemi-Socie and Liu critical plane models. A detailed analysis and discussion of the performance of the different models is presented with an emphasis on the versatility for different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreno B, Martin A, Lopez-Crespo P, Zapatero J, Dominguez J (2016) Estimations of fatigue life and variability under random loading in aluminum Al-2024T351 using strip yield models from NASGRO. Int J Fatigue 91:414–422

    Google Scholar 

  2. Lopez-Crespo P, Pommier S (2008) Numerical analysis of crack tip plasticity and history effects under mixed mode conditions. J Solid Mech Mater Eng 2:1567–1576. http://dx.doi.org/10.1299/jmmp.2.1567

    Article  Google Scholar 

  3. Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zapatero J (2015) Study of crack orientation and fatigue life prediction in biaxial fatigue with critical plane models. Eng Fract Mech 136:115–130

    Article  Google Scholar 

  4. Chen X, Gao Q, Sun XF (1994) Damage analysis of low-cycle fatigue under non-proportional loading. Int J Fatigue 16:221–225

    Article  Google Scholar 

  5. Brown MW, Miller KJ (1973) A theory for fatigue failure under multiaxial stress-strain conditions. Proc Inst Mech Eng 187:745–755

    Article  Google Scholar 

  6. Socie DF, Marquis GB (2000) Multiaxial fatigue. Society of Automotive Engineers Inc, Warrendale, PA (USA)

    Google Scholar 

  7. Ewalds HL, Wanhill RJH (1984) Fracture mechanics. Arnold, London

    Google Scholar 

  8. Shterenlikht A, Díaz-Garrido FA, Lopez-Crespo P et al (2004) Mixed mode (KI + KII) stress intensity factor measurement by electronic speckle pattern interferometry and image correlation. Appl Mech Mater 1–2:107–112

    Article  Google Scholar 

  9. Mokhtarishirazabad M, Lopez-Crespo P, Moreno B et al (2016) Evaluation of crack-tip fields from DIC data: a parametric study. Int J Fatigue 89:11–19

    Article  Google Scholar 

  10. Spagnoli A (2001) A new high-cycle fatigue criterion applied to out-of-phase biaxial stress state. Int J Mech Sci 43:2581–2591

    Article  Google Scholar 

  11. Cruces AS, Lopez-Crespo P, Moreno B, Antunes FV (2018) Multiaxial fatigue life prediction on S355 structural and offshore steel using SKS critical plane model. Metals 8(12):1060. https://doi.org/10.3390/met8121060

  12. Turski M, Bouchard PJ, Steuwer A, Withers PJ (2008) Residual stress driven creep cracking in AISI Type 316 stainless steel. Acta Mater 56:3598–3612. https://doi.org/10.1016/j.actamat.2008.03.045

    Article  Google Scholar 

  13. Yakada Y, Morishita T, Itoh T (2017) Effect of interchange in principal stress and strain directions on multiaxial fatigue strength of type 316 stainless steel. In: Proceedings of fatigue 2017 conference

    Google Scholar 

  14. Cailletaud G, Doquet V, Pineau A Cyclic multiaxial behaviour of an austenitic stainless steel: microstructural observation and micromechanical modelling. European Structural Integrity Society

    Google Scholar 

  15. Wang H, Brown MW (1993) Under proportional and non-proportional. 16:1285–1298

    Google Scholar 

  16. Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11:149–165

    Article  Google Scholar 

  17. Liu KC (1993) A method based on virtual strain energy parameters for multiaxial fatigue life prediction. ASTM STP 1191:67–84

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support from Ministerio de Economia y Competitividad through grant reference MAT2016-76951-C2-2-P and from Kakenhi Grant-in-Aid for Scientific Research (C) through grant number JP18K03854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lopez-Crespo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cruces, A.S., Lopez-Crespo, P., Moreno, B., Bressan, S., Itoh, T. (2019). Multiaxial Fatigue Analysis of Stainless Steel Used in Marine Structures. In: Correia, J., De Jesus, A., Fernandes, A., Calçada, R. (eds) Mechanical Fatigue of Metals. Structural Integrity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-13980-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13980-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13979-7

  • Online ISBN: 978-3-030-13980-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics