Skip to main content

Image Quality Assessment for Population Cardiac Magnetic Resonance Imaging

  • Chapter
  • First Online:
Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics

Abstract

Cardiac magnetic resonance (CMR) images play a growing role in diagnostic imaging of cardiovascular diseases. MRI is arguably the most comprehensive imaging modality for noninvasive and nonionizing imaging of the heart and great vessels and, hence, most suited for population imaging cohorts. Ensuring full coverage of the left ventricle (LV)  is a basic criterion of CMR image quality. Complete LV coverage, from base to apex, precedes accurate cardiac volume and functional assessment. Incomplete coverage of the LV is identified through visual inspection, which is time-consuming and usually done retrospectively in large imaging cohorts. In this chapter, we propose a novel automatic method to check the coverage of LV from CMR images by using Fisher discriminative and dataset invariance (FDDI) three-dimensional (3D) convolutional neural networks (CNN)  independently of image-acquisition parameters, such as imaging device, magnetic field strength, variations in protocol execution, etc. The proposed model is trained on multiple cohorts of different provenance to learn the appearance and identify missing basal and apical slices. To address this, a two-stage framework is proposed. First, the FDDI 3D CNN extracts high-level features in the common representation from different CMR datasets using adversarial approach; then these image features are used to detect missing basal and apical slices. Compared with the traditional 3D CNN strategy, the proposed FDDI 3D CNN can minimize the within-class scatter and maximize the between-class scatter, which can be adapted to other CMR image data for LV coverage assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.cardiacatlas.org/studies/determine/.

  2. 2.

    http://www.cardiacatlas.org/studies/mesa/.

References

  1. Attili A, Schuster A, Nagel E, Reiber J, van der Geest R (2010) Quantification in cardiac MRI: advances in image acquisition and processing. Int J Cardiovasc Imaging 26:27–40. https://doi.org/10.1007/s10554-009-9571-x

    Article  Google Scholar 

  2. Carneiro G et al (eds) (2016) Towards the semantic enrichment of free-text annotation of image quality assessment for UK Biobank cardiac cine MRI scans. In: Deep learning and data labeling for medical applications, vol 10008. Springer, Berlin

    Google Scholar 

  3. Cheng G, Zhou P, Han J (2016) RIFD-CNN: rotation-invariant and Fisher discriminative convolutional neural networks for object detection. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 2884–2893. https://doi.org/10.1109/CVPR.2016.315

  4. Demyanov S (2017) ConvNet library for Matlab. https://github.com/sdemyanov/ConvNet. Accessed 15 Oct 2017

  5. Ferreira P, Gatehouse P, Mohiaddin R, Firmin D (2013) Cardiovascular magnetic resonance artefacts. J Cardiovasc Magn Reson 15:41. https://doi.org/10.1186/1532-429X-15-41

    Article  Google Scholar 

  6. Ganin Y, Ustinova E, Ajakan H, Germain P et al (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2030–2096

    MathSciNet  MATH  Google Scholar 

  7. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al (2014) Generative adversarial nets. Advances in neural information processing systems, pp 2672–2680

    Google Scholar 

  8. van der Graaf A, Bhagirath P, Ghoerbien S, Götte M (2014) Cardiac magnetic resonance imaging: artefacts for clinicians. Neth Heart J 22:542–549. https://doi.org/10.1007/s12471-014-0623-z

    Article  Google Scholar 

  9. Gwet KL (2008) Intrarater reliability. Wiley encyclopedia clinical trials. Wiley, Hoboken, pp 1–14

    Google Scholar 

  10. He L, Tao D, Li X, Gao X (2012) Sparse representation for blind image quality assessment. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1146–1153

    Google Scholar 

  11. Huang Y, Shao L, Frangi AF (2017) Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In: IEEE conference on CVPR, pp 6070–6079

    Google Scholar 

  12. Ionescu C, Vantzos O, Sminchisescu C (2015) Matrix backpropagation for deep networks with structured layers. In: IEEE conference on computer vision (ICCV), pp 2965–2973. https://doi.org/10.1109/ICCV.2015.339

  13. Ji S, Xu W, Yang M, Yu K (2013) 3d convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231

    Article  Google Scholar 

  14. Kang L, Ye P, Li Y, Doermann D (2014) Convolutional neural networks for no-reference image quality assessment. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1733–1740. https://doi.org/10.1109/CVPR.2014.224

  15. Klinke V, Muzzarelli S, Lauriers N, Locca D, Vincenti G, Monney P, Lu C, Nothnagel D, Pilz G, Lombardi M, van Rossum A, Wagner A, Bruder O, Mahrholdt H, Schwitter J (2013) Quality assessment of cardiovascular magnetic resonance in the setting of the European CMR registry: description and validation of standardized criteria. J Cardiovasc Magn Reson 15:55. https://doi.org/10.1186/1532-429X-15-55

    Article  Google Scholar 

  16. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems, pp 1097–1105

    Google Scholar 

  17. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  18. Lisanti G, Masi I, Bagdanov AD, Del Bimbo A (2015) Person re-identification by iterative re-weighted sparse ranking. IEEE TPAMI 37(8):1629–1642

    Article  Google Scholar 

  19. Lu Y, Connelly K, Dick A, Wright G, Radau P (2011) Watershed segmentation of basal left ventricle for quantitation of cine cardiac MRI function. J Cardiovasc Magn Reson 13:1. https://doi.org/10.1186/1532-429X-13-S1-P4

    Article  Google Scholar 

  20. Ma L, Yang X, Tao D (2014) Person re-identification over camera networks using multi-task distance metric learning. IEEE TIP 23(8):3656–3670

    MathSciNet  MATH  Google Scholar 

  21. Marcus J, Götte M, DeWaal L, Stam M, Van der Geest R, Heethaar R, Van Rossum A (1999) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6. https://doi.org/10.3109/10976649909080828

    Article  Google Scholar 

  22. Moorthy A, Bovik A (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20:3350–3364. https://doi.org/10.1109/TIP.2011.2147325

    Article  MathSciNet  MATH  Google Scholar 

  23. Petersen S, Matthews P, Francis J, Robson M, Zemrak F, Boubertakh R, Young A, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S (2016) UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson 18:8. https://doi.org/10.1186/s12968-016-0227-4

    Article  Google Scholar 

  24. Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis JM, Friedrich MG, Leeson P, Nagel E, Plein S, Rademakers FE et al (2013) Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank-rationale, challenges and approaches. J Cardiovasc Magn Reson 15:46. https://doi.org/10.1186/1532-429X-15-46

    Article  Google Scholar 

  25. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S et al (2016) UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson 18(1):8

    Article  Google Scholar 

  26. Pusey E, Lufkin R, Brown R, Solomon M, Stark D, Tarr R, Hanafee W (1986) Magnetic resonance imaging artifacts: mechanism and clinical significance. Radiographics 6:891–911. https://doi.org/10.1148/radiographics.6.5.3685515

    Article  Google Scholar 

  27. Saad M, Bovik A, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21:3339–3352. https://doi.org/10.1109/TIP.2012.2191563

    Article  MathSciNet  MATH  Google Scholar 

  28. Salah A, Alpaydin E, Akarun L (2002) A selective attention-based method for visual pattern recognition with application to handwritten digit recognition and face recognition. IEEE Trans Pattern Anal Mach Intell 24:420–425. https://doi.org/10.1109/34.990146

    Article  Google Scholar 

  29. Sermanet P, Chintala S, LeCun Y (2012) Convolutional neural networks applied to house numbers digit classification. In: International conference on pattern recognition (ICPR). IEEE, pp 3288–3291

    Google Scholar 

  30. Sharmanska V, Quadrianto N (2016) Learning from the mistakes of others: matching errors in cross-dataset learning. In: IEEE conference on CVPR, pp 3967–3975

    Google Scholar 

  31. Wang Z, Wu G, Sheikh H, Simoncelli E, Yang EH, Bovik A (2006) Quality-aware images. IEEE Trans Image Process 15:1680–1689. https://doi.org/10.1109/TIP.2005.864165

    Article  Google Scholar 

  32. Xue W, Mou X, Zhang L, Bovik A, Feng X (2014) Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans Image Process 23:4850–4862. https://doi.org/10.1109/TIP.2014.2355716

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based Fisher discrimination dictionary learning for image classification. Int J Comput Vis 109:209–232. https://doi.org/10.1007/s11263-014-0722-8

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang L, Gooya A, Dong B, Hua R, Petersen SE, Medrano-Gracia P, Frangi AF (2016) Automated quality assessment of cardiac MR images using convolutional neural networks. In: International workshop on simulation and synthesis in medical imaging (SASHIMI). Springer, pp 138–145. https://doi.org/10.1007/978-3-319-46630-9_14

    Chapter  Google Scholar 

  35. Zhang L, Pereañez M, Piechnik SK, Neubauer S, Petersen SE, Frangi AF (2018) Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 481–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Pereañez, M., Piechnik, S.K., Neubauer, S., Petersen, S.E., Frangi, A.F. (2019). Image Quality Assessment for Population Cardiac Magnetic Resonance Imaging. In: Lu, L., Wang, X., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13969-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13968-1

  • Online ISBN: 978-3-030-13969-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics