Skip to main content

Pollution and Meiofauna—Old Topics, New Hazards

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

Abstract

Regrettably, pollution, in one or another form, will remain a permanent hazard even in the future. So, what is new with studies on pollution, where is the forward perspective? In the last years, new developments caused new sources of pollution with a risk potential of an unprecedented, global scale: water acidification through climate change and environmental impact of plastic debris. Other pollutants envisaged here are indeed ‘old’, but their possible fields of impact are new and require novel studies in hitherto untouched reaches: petroleum hydrocarbons widespread at the deep-sea floor and in groundwater layers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andrady L (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605

    Google Scholar 

  • Baguley JG, Montagna PA, Cooksey C et al (2015) Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140

    Google Scholar 

  • Barker S, Elderfield H (2002) Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297:833–836

    Google Scholar 

  • Barrows APW, Cathey SE, Petersen CW (2018) Marine environment microfiber contamination: global patterns and the diversity of microparticle origins. Environ Pollut 237:275–284

    Google Scholar 

  • Beiras R, Tato T (2019) Microplastics do not increase toxicity of a hydrophobic organic chemical to marine plankton. Mar Pollut Bull 138:58–62

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bergmann M, Wirzberger V, Krumpen T et al (2017) High quantities of microplastic in Arctic deep-sea sediments from the Hausgarten observatory. Environ Sci Technol 51:11000–11010

    Article  CAS  Google Scholar 

  • Bik HM, Halanych KM, Sharma J, Thomas WK (2012) Dramatic shifts in benthic microbial eukaryote communities following the deepwater horizon oil spill. PLoS ONE 7(6):e38550. https://doi.org/10.1371/journal.pone.0038550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braeckman U, Van Colen C, Guilini K et al (2014) Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidification. PLoS ONE 9(10):e1081 53. https://doi.org/10.1371/journal.pone.0108153

  • Brannock PM, Halanych KM (2015) Meiofaunal community analysis by high-throughput sequencing: comparison of extraction, quality filtering, and clustering methods. Mar Genom 23:67–75

    Article  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanog Mar Biol Ann Rev 49:1–42

    Google Scholar 

  • Chen SS, Sun Y, Tsang DCW et al (2017) Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: metal/metalloid bioaccessibility, microtox bioassay, and enzyme activities. Sci Total Environ 579:1419–1426

    Article  CAS  Google Scholar 

  • Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233

    Article  CAS  Google Scholar 

  • Clements JC, Darrow ES (2018) Eating in an acidifying ocean: a quantitative review of elevated CO2 effects on the feeding rates of calcifying marine invertebrates. Hydrobiologia 820:1–21

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E et al (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49(2):1130–1137

    Article  CAS  Google Scholar 

  • Creer S, Fonseca VG, Porazinska DL et al (2010) Ultrasequencing of the meiofaunal biosphere: practice, pitfalls and promises. Mol Ecol 19(Suppl 1):4–20. https://doi.org/10.1111/j.1365-294X.2009.04473.x

    Article  PubMed  Google Scholar 

  • Dahms H-U, Schizas NV, James RA et al (2018) Marine hydrothermal vents as templates for global change scenarios. Hydrobiologia 818:1–10. https://doi.org/10.1007/s10750-018-3598-8

    Article  Google Scholar 

  • DiGiulio DC, Jackson RB (2016) Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming, field. Environ Sci Technol 50:4524–4536. https://doi.org/10.1021/acs.est.5b04970

  • EcoWatch by Greenpeace (2016) https://www.ecowatch.com/the-biggest-oil-leak-youve-never-heard-of

  • Erni-Cassola G, Gibson MI, Thompson RC et al (2017) Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1–20 μm) in environmental samples. Environ Sci Technol 51(23):13641–13648

    Google Scholar 

  • Fonseca G, Fontaneto D, Di Domenico M (2017) Addressing biodiversity shortfalls in meiofauna. J Exp Mar Biol Ecol 502:26–38. http://dx.doi.org/10.1016/j.jembe.2017.05.007

  • Fontaneto D, Flot J-F, Tang CQ (2015) Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar Biodiv 45:433–451

    Google Scholar 

  • GESAMP (2015) Sources, fate and effects of microplastics in the marine environment: a global assessment (Kershaw PJ (ed)) (IMO/FAO/UNESCOIOC/ UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint group of experts on the scientific aspects of marine environmental protection). Rep Stud GESAMP No. 90, 96 p

    Google Scholar 

  • GESAMP (2016) Sources, fate and effects of microplastics in the marine environment: part two of a global assessment (Kershaw PJ, Rochman CM, eds) (IMO/FAO/ UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint group of experts on the scientific aspects of marine environmental protection). Rep Stud GESAMP No. 93, 220 p

    Google Scholar 

  • Green DS, Boots B, Sigwart J et al (2016) Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling. Environ Pollut 208 B:426–434

    Google Scholar 

  • Gusmão F, Di Domenico M, Amaral ACZ et al (2016) In situ ingestion of microfibres by meiofauna from sandy beaches. Environ Pollut 216:584–590

    Article  Google Scholar 

  • Hägerbäumer A, Höss S, Ristau K et al (2016) A comparative approach using ecotoxicological methods from single-species bioassays to model ecosystems. Environ Toxicol Chem 35:2987–2997

    Google Scholar 

  • Haynert K, Schönfeld J, Schiebel R et al (2014) Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experiment. Biogeosciences 11:1581–1597

    Article  CAS  Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075

    Article  CAS  Google Scholar 

  • Hu P, Dubinsky EA, Probst A et al (2017) Simulation of deepwater horizon oil plume reveals substrate specialization within a complex community of hydrocarbon degraders. PNAS 114(28). https://doi.org/10.1073/pnas.1703424114

  • Ingels J, dos Santos G, Hicks A (2018) Short-term CO2 exposure and temperature rise effects on metazoan meiofauna and free-living nematodes in sandy and muddy sediments: results from a flume experiment. J Exp Mar Biol Ecol 502:211–226

    Article  Google Scholar 

  • Karakolis EG, Nguyen B, You JB et al (2018) Digestible fluorescent coatings for cumulative quantification of microplastic ingestion. Environ Sci Technol Lett 5:62–67

    Article  CAS  Google Scholar 

  • King W, Sebens KP (2018) Non-additive effects of air and water warming on an intertidal predator-prey interaction. Mar Biol 165:64. https://doi.org/10.1007/s00227-018-3320-4

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment. Critical review and model-supported re-interpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Google Scholar 

  • Kovats S, Depledge M, Haines A et al (2014) The health implications of fracking. Lancet 383(9919):757–758. https://doi.org/10.1016/S0140-6736(13)62700-2Cite

  • Kurihara H, Ishimatsu A, Shirayama Y (2007) Effects of elevated seawater CO2 concentration on the meiofauna. J Mar Sci Technol 15:17–22

    Google Scholar 

  • Lenz R, Enders K, Nielsen TG et al (2016) Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci USA 113(29):E4121–E4122

    Article  CAS  Google Scholar 

  • Li WC, Tse HF, Fok L (2016) Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ 566–567:333–349

    Article  Google Scholar 

  • McIntyre-Wressnig A, Bernhard JM, McCorkle DC, Hallock P (2013) Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphistegina gibbosa. Mar Ecol Prog Ser 472:45–60

    Article  CAS  Google Scholar 

  • Meadows AS, Ingels J, Widdicombe S et al (2015) Effects of elevated CO2 and temperature on an intertidal meiobenthic community. J Exp Mar Biol Ecol 469:44–56

    Article  CAS  Google Scholar 

  • Mevenkamp L, Ong EZ, Van Colen C et al (2018) Combined, short-term exposure to reduced seawater pH and elevated temperature induces community shifts in an intertidal meiobenthic assemblage. Mar Environ Res 133:32–44

    Article  CAS  Google Scholar 

  • Molari M, Guilini K, Lott C et al (2018) CO2 leakage alters biogeochemical and ecological functions of submarine sands. Sci Adv 4:eaao2040

    Google Scholar 

  • Montagna PA, Baguley JG, Cooksey C et al (2013) Deep-sea benthic footprint of the deepwater horizon blowout. PLoS ONE 8(8):e70540. https://doi.org/10.1371/journal.pone.0070540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moos Nv, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335

    Google Scholar 

  • Oh JH, Kim D, Kim TW et al (2017) Effect of increased pCO2 in seawater on survival rate of different developmental stages of the harpacticoid copepod Tigriopus japonicus. Anim Cells Syst 21(3):217–222. https://doi.org/10.1080/19768354.2017.1326981

    Article  CAS  Google Scholar 

  • Pascal P-Y, Fleeger JW, Galvez F, Carman KR (2010) The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Mar Pollut Bull 60:2201–2208. https://doi.org/10.1016/j.marpolbul.2010.08.018

    Article  CAS  PubMed  Google Scholar 

  • Paul-Pont I, Lacroix C, González Fernández C et al (2016) Exposure of marine mussels Mytilus spp. to polystyrene microplastics: toxicity and influence on fluoranthene bioaccumulation. Environ Pollut 216:724–737. http://dx.doi.org/10.1016/j.envpol.2016.06.03910.1016/j.envpol.2016.06.039

  • Paul-Pont I, Tallec K, González-Fernández C (2018) Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. Front Mar Sci 5:252. http://dx.doi.org/10.3389/fmars.2018.00252

  • Peeken I, Primke S, Beyer B et al (2018) Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat Comm https://doi.org/10.1038/s41467-018-03825-5

  • Pörtner H-O (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Google Scholar 

  • Rassmann J, Lansard B, Gazeau F et al (2018) Impact of ocean acidification on the biogeochemistry and meiofaunal assemblage of carbonate-rich sediments: Results from core incubations (Bay of Villefranche, NW Mediterranean Sea). Mar Chem 203:102–119

    Google Scholar 

  • Reddy CM, Arey JS (2017) Did dispersants help responders breathe easier? Chemical spray in Deepwater Horizon improved air quality at surface. Oceanus Mag WHOI 53(1), online Winter 2017

    Google Scholar 

  • Reuscher MG, Baguley JG, Conrad-Forrest N et al (2017) Temporal patterns of deepwater horizon impacts on the benthic infauna of the northern Gulf of Mexico continental slope. PLoS ONE 12(6):e0179923. https://doi.org/10.1371/journal.pone.0179923

  • Ricketts ER, Kennett JP, Hill TM, Barry JP (2009) Effects of carbon dioxide sequestration on California margin deep-sea foraminiferal assemblages. Mar Micropaleontol 72:165–175

    Article  Google Scholar 

  • Santos ACC, Choueri RB, Pauly GDFE et al (2018) Is the microcosm approach using meiofauna community descriptors a suitable tool for ecotoxicological studies? Ecotoxicol Environ Saf 147:945–953

    Article  CAS  Google Scholar 

  • Sarmento VC, Souza TP, Esteves AM, Santos PJP (2015) Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs 34:955–966

    Article  Google Scholar 

  • Sarmento VC, Pinheiro BR, Montes MJF, Santos PJP (2017) Impact of predicted climate change scenarios on a coral reef meiofauna community. ICES J Mar Sci. https://doi.org/10.1093/icesjms/fsw234

  • Semprucci F, Balsamo M, Sandulli R (2016) Assessment of the ecological quality (EcoQ) of the Venice lagoon using the structure and biodiversity of the meiofaunal assemblages. Ecol Ind 67:451–457

    Article  Google Scholar 

  • Stoch F, Artheau M, Brancelj A et al (2009) Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshw Biol 54:745–755

    Article  Google Scholar 

  • Taylor ML, Gwinnett C, Robinson LF, Woodall LC (2016) Plastic microfiber ingestion by deep-sea organisms. Sci Rep 6:33997

    Article  CAS  Google Scholar 

  • Turner E, Montagna PA (2016) The max bin regression method to identify maximum bioindicator responses to ecological drivers. Ecol Inform 36:118–125

    Article  Google Scholar 

  • U.S. EPA (2016) Hydraulic fracturing for oil and gas impacts from the hydraulic fracturing water cycle on drinking water resources in the United States (Final report). US Environmental Protection Agency, Washington, DC, EPA/600/R-16/236F

    Google Scholar 

  • Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR (2015a) Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut 199:10–17

    Article  Google Scholar 

  • Van Cauwenberghe L, Devriese L, Galgani F et al (2015b) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17

    Article  Google Scholar 

  • Wang J, Tan Z, Peng J et al (2016) The behaviors of microplastics in the marine environment. Mar Environ Res 113:7–17

    Article  CAS  Google Scholar 

  • Warner NR, Christie CA, Jackson RB, Vengosh A (2013) Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ Sci Technol 47(20):11849–11857. https://doi.org/10.1021/es402165b

    Article  CAS  PubMed  Google Scholar 

  • Wegner A, Besseling E, Foekema EM et al (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis L.). Environ Toxicol Chem 31(11):2490–2497

    Google Scholar 

  • Welden NAC, Cowie PR (2016) Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut 218 B:895–900

    Google Scholar 

  • Wright SL, Rowe D, Thompson RC, Galloway TS (2013) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031eR1033. http://dx.doi.org/10.1016/j.cub.2013.10.068

  • Zeppilli D, Sarrazin J, Leduc D et al (2015) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodiv 45:505–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Giere .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Giere, O. (2019). Pollution and Meiofauna—Old Topics, New Hazards. In: Perspectives in Meiobenthology. SpringerBriefs in Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-13966-7_3

Download citation

Publish with us

Policies and ethics