Skip to main content

Laser-Assisted Jet Electrochemical Machining of Titanium-Based Biomedical Alloy

  • Chapter
  • First Online:
Biomanufacturing

Abstract

Titanium alloy (Ti-6Al-4V) is best among various metallic materials for making medical implants due to their longer life and surface topology to promote osseointegration. Ti-6Al-4V has excellent mechanical properties as well as superior biological properties along with higher corrosion resistance. For an implant material, its machining plays an important role to make it fit for the medical applications. This chapter mainly focuses on machining and surface characteristics of Ti-6Al-4V when machined with laser-assisted jet electrochemical machining process. The Taguchi methodology-based design of experiments L25 (55) employed to study the effect of various parameters of the developed LAJECM setup on various response characteristics is investigated and explained with the help of S/N ratio, analysis of variance, and scanning electron micrograph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANOVA:

Analysis of variance

DC :

Duty cycle

EC :

Electrolyte concentration

ECM:

Electrochemical machining

EFR :

Electrolyte flow rate

HUAT:

Hot ultrasonically assisted turning

IEG :

Inter-electrode gap

JECM:

Jet electrochemical machining

LAJECM:

Laser-assisted jet electrochemical machining

LAM:

Laser-assisted machining

LAMM:

Laser-assisted micro-milling

MRR:

Material removal rate

SV :

Supply voltage

UAT:

Ultrasonic-assisted turning

UVAD:

Ultrasonic vibration-assisted drilling

UVAG:

Ultrasonic vibration-assisted grinding

UVAT:

Ultrasonic vibration-assisted tapping

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    Article  CAS  Google Scholar 

  2. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  CAS  Google Scholar 

  3. Prakash C, Singh S, Sidhu SS, Singh S, Verma K (2018) Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications. Vacuum 155:578–584. https://doi.org/10.1016/j.vacuum.2018.06.063

    Article  CAS  Google Scholar 

  4. Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2016) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc IMechE Part B: J Eng Manuf 230:331–353

    Article  CAS  Google Scholar 

  5. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Potential of powder mixed electric discharge machining to enhance the wear and tribological performance of β-Ti implant for orthopedic applications. J Nanoeng Nanomanuf 5(4):261–269

    Article  CAS  Google Scholar 

  6. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24:3622–3633

    Article  CAS  Google Scholar 

  7. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electrical discharge machining of Ti-35Nb-7Ta-5Zr β-Ti alloy. Mater Manuf Process 32(3):274–285. https://doi.org/10.1080/10426914.2016.1198018

    Article  CAS  Google Scholar 

  8. Donachie MJ (2000) Titanium: a technical guide. ASM International, Geauga County, OH

    Google Scholar 

  9. Gupta K, Laubscher RF (2017) Sustainable machining of titanium alloys: a critical review. Proc IMechE Part B: J Eng Manuf 231(14):2543–2560

    Article  CAS  Google Scholar 

  10. Davim PJ (2014) Machining of titanium alloys. Springer, Heidelberg

    Google Scholar 

  11. Pramanik A (2014) Problems and solutions in machining of titanium alloys. Int J Adv Manuf Tech 70:919–928

    Article  Google Scholar 

  12. Hong SY, Ding Y (2001) Cooling approaches and cutting temperatures in cryogenic machining of Ti-6Al-4V. Int J Mach Tools Manuf 41(10):1417–1437

    Article  Google Scholar 

  13. Sun S, Harris J, Brandt M (2008) Parametric investigation of laser-assisted machining of commercially pure titanium. Adv Eng Mater 10(6):565–572

    Article  CAS  Google Scholar 

  14. Dandekar CR, Shina YC, Barnes J (2010) Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int J Mach Tool Manuf 50(2):174–182

    Article  Google Scholar 

  15. Hedberg GK, Shin YC, Xu L (2015) Laser-assisted milling of Ti-4Al-6V with the consideration of surface integrity. Int J Adv Manuf Tech 79(9):1645–1658

    Article  Google Scholar 

  16. Sun S, Brandt M, Barnes JE et al (2011) Experimental investigation of cutting forces and tool wear during laser-assisted milling of Ti-6Al-4V alloy. ProcIMechE Part B: J Eng Manuf 225(9):1512–1527

    CAS  Google Scholar 

  17. Sun S, Brandt M, Dargusch MS (2010) The effect of a laser beam on chip formation during machining of Ti6Al4V alloy. Metall Mater Trans A 41:1573–1581

    Article  Google Scholar 

  18. Ding H, Shen N, Shin YC (2012) Thermal and mechanical modeling analysis of laser-assisted micromilling of difficult-to-machine alloys. J Mater Process Technol 212:601–613

    Article  CAS  Google Scholar 

  19. Shen N, Ding H (2013) Thermo-mechanical coupled analysis of laser-assisted mechanical micromilling of difficult-to-machine metal alloys used for bio-implant. Int J Precis Eng Manuf 14(10):1677–1685

    Article  Google Scholar 

  20. Strano M, Chiappini E, Tirelli S et al (2013) Comparison of Ti6Al4V machining forces and tool life for cryogenic versus conventional cooling. ProcIMechE Part B: J Eng Manuf 227(9):1403–1408

    CAS  Google Scholar 

  21. Rashid RAR, Sun S, Wanga G et al (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int J Mach Tool Manuf 63:58–69

    Article  Google Scholar 

  22. Rashid RAR, Sun S, Wanga G et al (2012) The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int J Mach Tool Manuf 63:41–43

    Article  Google Scholar 

  23. Rashid RAR, Bermingham MJ, Sun S et al (2013) The response of the high strength Ti–10V–2Fe–3Al beta titanium alloy to laser assisted cutting. Precis Eng 37(2):461–472

    Article  Google Scholar 

  24. Rashid RAR, Sun S, Palanisamy S et al (2014) A study on laser assisted machining of Ti10V2Fe3Al alloy with varying laser power. Int J Adv Manuf Tech 74:219–224

    Article  Google Scholar 

  25. Pujana J, Rivero A, Celaya A et al (2009) Analysis of ultrasonic-assisted drilling of Ti-6Al-4V. Int J Mach Tool Manuf 49(6):500–508

    Article  Google Scholar 

  26. Nik MG, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti-6Al-4V alloy. Proc CIRP 1:353–358

    Article  Google Scholar 

  27. Pawar S, Patil S, Joshi S et al (2014) An experimental analysis of ultrasonic vibration assisted tapping of Ti-6Al-4V. SAE technical paper, 28-0024

    Google Scholar 

  28. Maurotto A, Muhammad R, Roy A et al (2013) Enhanced ultrasonically assisted turning of a b-titanium alloy. Ultrasonics 53:1242–1250

    Article  CAS  Google Scholar 

  29. Muhammad R, Maurotto A, Demiral M et al (2014) Thermally enhanced ultrasonically assisted machining of Ti alloy. CIRP J Manuf Sci Technol 7(2):159–167

    Article  Google Scholar 

  30. McGeough JA (1974) Principles of electrochemical machining, 1st edn. Springer, United States, pp 1–255

    Google Scholar 

  31. Rajurkar KP, Zhu D, McGeough JA, Kozak J, De Silva AKM (1999) New developments in electro-chemical machining, CIRP Ann Manuf Technol 48(2):567–580

    Google Scholar 

  32. McGeough JA, Pajak PT, De Silva AKM, Harrison DK (2003) Recent research and developments in electrochemical machining. Int J Electric Mach 8:1–14

    Article  Google Scholar 

  33. Pajak PT, De Silva AKM, McGeough JA, Harrison DK (2004) Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM). J Mater Process Technol 149:512–518

    Article  CAS  Google Scholar 

  34. De Silva AKM, Altena HSJ, McGeough JA (2003) Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann Manuf Technol 52(1):165–168

    Google Scholar 

  35. De Silva AKM, Pajak PT, Harrison DK, McGeough JA (2004) Modelling and experimental investigation of laser assisted jet electrochemical machining. CIRP Ann Manuf Technol 53(1):179–182

    Article  Google Scholar 

  36. Ruszaj A, Czekaj J, Chuchro M, Skrabalak G (2001) Electrochemical machining with short interelectrode voltage pulses. In: Proceedings of the international symposium for electromachining, ISEM XIII, vol 1, pp 1–538

    Google Scholar 

  37. De Silva AKM, Pajak PT, McGeough JA, Harrison DK (2011) Thermal effects in Laser-assisted jet electrochemical machining. CIRP Ann Manuf Technol 60:243–246

    Article  Google Scholar 

  38. Pajak PT, De Silva AKM, Harrison DK, McGeough JA (2006) Process energy analysis for aluminium alloy and stainless steel in laser-assisted jet electrochemical machining. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol 220 (Special Issue Paper), pp 405–412

    Google Scholar 

  39. Pajak PT, De Silva AKM, Harrison DK, McGeough JA (2006) Precision and efficiency of laser-assisted jet electrochemical machining. Precis Eng 30:288–298

    Article  Google Scholar 

  40. Malik A, Manna A (2017) Study on precision microholes using pulsed laser with jet electrochemical machining. Arab J Sci Eng 43(9):4593–4608. https://doi.org/10.1007/s13369-017-2998-9

    Article  Google Scholar 

  41. Malik A, Manna A (2018) Multi-response optimization of laser assisted jet electrochemical machining parameters based on grey relational analysis. J Braz Soc Mech Sci Eng 40:148. https://doi.org/10.1007/s40430-018-1069-9

    Article  Google Scholar 

  42. Malik A, Manna A (2019) An insight into laser-assisted jet electrochemical machining process. In: Dixit U, Joshi S, Davim J (eds) Application of lasers in manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0556-6_7

  43. Malik A, Manna A (2018) Investigation on the laser-assisted jet electrochemical machining process for improvement in machining performance. Int J Adv Manuf Technol 96:3917–3932. https://doi.org/10.1007/s00170-018-1846-8

    Article  Google Scholar 

  44. Antil P, Singh S, Manna A (2017) Electrochemical discharge drilling of SiC reinforced polymer matrix composite using Taguchi’s grey relational analysis. Arab J Sci Eng 43(3):1257–1266 (Springer)

    Article  Google Scholar 

  45. Manna A, Malik A (2016) Micro-drilling of Al/Al2O3-MMC on developed ECMM. In: Proceedings of the World Congress on Engineering 2016 (WCE 2016), vol 2. London, U.K., pp. 652–657

    Google Scholar 

  46. Manna A, Malik A (2014) An experimental investigation on designed and fabricated WECSM setup during micro slicing of e-glass fibre epoxy composite. In: All India Manufacturing Technology, Design and Research Conference 2014 (AIMTDR-2014), IIT Guwahati, vol 26, issue 1, pp 625-1–625-6

    Google Scholar 

  47. Manna A, Malik A (2016) Investigation of electrochemical behavior during drilling of EN-31 Steel on developed laser assisted jet electrochemical machine. In: All India Manufacturing Technology, Design and Research Conference 2016 (AIMTDR-2016), College of Engineering Pune, vol 27, pp 583–587

    Google Scholar 

  48. Antil P, Singh S, Manna A (2018) Genetic algorithm based optimization of ECDM process for polymer matrix composite. Mater Sci Forum 928:144–149

    Article  Google Scholar 

  49. Malik A, Manna A (2016) An experimental investigation on developed WECSM during micro slicing of e-glass fibre epoxy composite. Int J Adv Manuf Technol 85:2097–2106

    Article  Google Scholar 

  50. Antil P, Singh S, Singh P (2018) Taguchi’s methodology based parametric analysis of material removal rate during ECDM of PMCs. Proc Manuf 26:469–473 (Elsevier)

    Google Scholar 

  51. Malik A, Manna A (2017) Travelling wire electrochemical spark machining: an overview. In: Kibria G, Bhattacharyya B, Davim J (eds) Non-traditional micromachining processes. Materials forming, machining and tribology. Springer, Cham. https://doi.org/10.1007/978-3-319-52009-4_11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anup Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malik, A., Manna, A., Prakash, C., Singh, S. (2019). Laser-Assisted Jet Electrochemical Machining of Titanium-Based Biomedical Alloy. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_9

Download citation

Publish with us

Policies and ethics