Skip to main content

Neurosurgical Bone Grinding

  • Chapter
  • First Online:
Biomanufacturing

Abstract

Brain cancer is one of the major causes of death worldwide which occurs due to the tumors present in the brain. If these tumors not diagnosed at right time, then it will lead to loss of life. Neurosurgery, radiotherapy, and chemotherapy are the treatments which are used to remove tumors from the brain. Neurosurgery is often used as a treatment to diagnose this life-threatening disease. In surgical treatment especially in neurosurgery and orthopedics, bone grinding is commonly used. Bone grinding is an operation in which some part of the bone is removed to gain clearer operative access to the bones. Heat generated during bone grinding results in a rise in temperature which may cause harmful effects like osteonecrosis, blood coagulation, and optic nerve damage. This is the major concern for experts working in this area. Microstructure and thermophysical properties of the bone significantly affect the response of bone toward machining. The outcomes of research work done by experts are explained with their experimental setups. Different mathematical models are being explained by their key equations. Computational models and the role of automation in surgical operations are highlighted to reduce human involvement in such operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shih AJ, Tai BL, Zhang L et al (2012) Prediction of bone grinding temperature in skull base neurosurgery. CIRP Ann Manuf Technol 61:307–310. https://doi.org/10.1016/j.cirp.2012.03.078

    Article  Google Scholar 

  2. Tai BL, Zhang L, Wang A et al (2013) Neurosurgical bone grinding temperature monitoring. Procedia CIRP 5:226–230. https://doi.org/10.1016/j.procir.2013.01.045

    Article  Google Scholar 

  3. Zhang L, Tai BL, Wang G et al (2013) Thermal model to investigate the temperature in bone grinding for skull base neurosurgery. Med Eng Phys 35:1391–1398. https://doi.org/10.1016/j.medengphy.2013.03.023

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tai BL, Zhang L, Wang AC et al (2013) Temperature prediction in high speed bone grinding using motor PWM signal. Med Eng Phys 35:1545–1549. https://doi.org/10.1016/j.medengphy.2013.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  5. Manić M, Stamenković Z, Mitković M et al (2015) Design of 3D model of customized anatomically adjusted implants. Facta Univ Ser Mech Eng 13:269–282

    Google Scholar 

  6. Fernandes CR, Fernandes BL (2003) Evidence of semi-solid formation in medical grade Ti6Al4V alloy using induction heating. Facta Univ Ser Mech Eng 1:1–2

    Google Scholar 

  7. Danda A, Kao YT, Kuttolamadom MA, Tai BL (2016) Characterization of forces in high-speed bone cutting and grinding for haptics rendering. ASME 2016 11th Int Manuf Sci Eng Conf MSEC 2016 2:1–8. https://doi.org/10.1115/msec2016-8794

  8. Mišić D, Manić M, Vitković N, Korunović N (2015) Toward an integrated information system for the design, manufacturing and application of customized implants. Facta Univ Ser Mech Eng 13:307–323

    Google Scholar 

  9. Zhang L, Tai BL, Wang AC, Shih AJ (2013) Mist cooling in neurosurgical bone grinding. CIRP Ann 62:367–370. https://doi.org/10.1016/j.cirp.2013.03.125

    Article  Google Scholar 

  10. Liang S, Shih AJ (2016) Analysis of machining and machine tools. Springer, US, Boston, MA

    Book  Google Scholar 

  11. Alam K, Khan M, Muhammad R et al (2015) In-vitro experimental analysis and numerical study of temperature in bone drilling. Technol Heal Care 23:775–783. https://doi.org/10.3233/THC-151035

    Article  Google Scholar 

  12. Enomoto T, Shigeta H, Sugihara T, Satake U (2014) A new surgical grinding wheel for suppressing grinding heat generation in bone resection. CIRP Ann 63:305–308. https://doi.org/10.1016/j.cirp.2014.03.026

    Article  Google Scholar 

  13. Cseke A, Heinemann R (2018) The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials. Med Eng Phys 51:24–30. https://doi.org/10.1016/j.medengphy.2017.10.009

    Article  PubMed  Google Scholar 

  14. Yang M, Li C, Zhang Y et al (2018) Microscale bone grinding temperature by dynamic heat flux in nanoparticle jet mist cooling with different particle sizes. Mater Manuf Process 33:58–68. https://doi.org/10.1080/10426914.2016.1244846

    Article  CAS  Google Scholar 

  15. Strbac GD, Giannis K, Unger E et al (2014) A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods. Clin Oral Implants Res 25:622–631. https://doi.org/10.1111/clr.12090

    Article  PubMed  Google Scholar 

  16. Gehrke SA, Neto HL, Mardegan FEC (2013) Investigation of the effect of movement and irrigation systems on temperature in the conventional drilling of cortical bone. Br J Oral Maxillofac Surg 51:953–957. https://doi.org/10.1016/j.bjoms.2012.10.023

    Article  PubMed  Google Scholar 

  17. Siljander BR, Wang AC, Zhang L et al (2014) Cool mist irrigation improves heat dissipation during surgical bone drilling. J Neurol Surgery, Part B Skull Base 75:243–246. https://doi.org/10.1055/s-0034-1368098

    Article  Google Scholar 

  18. Sasaki M, Morris S, Goto T et al (2010) Spray-irrigation system attached to high-speed drills for simultaneous prevention of local heating and preservation of a clear operative field in spinal surgery. Neurol Med Chir (Tokyo) 50:900–904. https://doi.org/10.2176/nmc.50.900

    Article  Google Scholar 

  19. Gupta V, Pandey PM, Gupta RK, Mridha AR (2017) Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone. Proc Inst Mech Eng Part H J Eng Med 231:189–196. https://doi.org/10.1177/0954411916688500

    Article  Google Scholar 

  20. Strbac GD, Unger E, Donner R et al (2014) Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model. Clin Oral Implants Res 25:665–674. https://doi.org/10.1111/clr.12032

    Article  PubMed  Google Scholar 

  21. Gaspar J, Borrecho G, Oliveira P et al (2013) Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study. Acta Med Port 26:231–236

    PubMed  Google Scholar 

  22. Leite PHAS, Barreto-Filho TA, Oliveira TS et al (2011) Microscopic evaluation of bone fragments obtained by different methods of irrigation and osteotomy. Pesqui Bras Odontopediatria Clin Integr 11:539–545. https://doi.org/10.4034/PBOCI.2011.114.14

    Article  Google Scholar 

  23. Trisi P, Berardini M, Falco A et al (2014) Insufficient irrigation induces peri-implant bone resorption: An in vivo histologic analysis in sheep. Clin Oral Implants Res 25:696–701. https://doi.org/10.1111/clr.12127

    Article  PubMed  Google Scholar 

  24. Tawy GF, Rowe PJ, Riches PE (2016) thermal damage done to bone by burring and sawing with and without irrigation in knee arthroplasty. J Arthroplasty 31:1102–1108. https://doi.org/10.1016/j.arth.2015.11.002

    Article  PubMed  Google Scholar 

  25. Isler SC, Cansiz E, Tanyel C et al (2011) The effect of irrigation temperature on bone healing. Int J Med Sci 8:704–708. https://doi.org/10.7150/ijms.8.704

    Article  PubMed  PubMed Central  Google Scholar 

  26. Owens BBD, White DW, Wenke JC (2009) Comparison of irrigation solutions and devices in a contaminated musculoskeletal wound survival model. J Bone Jt Surg - Ser A 91:92–98. https://doi.org/10.2106/JBJS.G.01566

    Article  Google Scholar 

  27. Bullon B, Bueno EF, Herrero M et al (2015) Effect of irrigation and stainless steel drills on dental implant bed heat generation. J Mater Sci Mater Med 26:1–10. https://doi.org/10.1007/s10856-015-5412-8

    Article  CAS  Google Scholar 

  28. Gehrke SA, Pazetto MK, de Oliveira S et al (2014) Study of temperature variation in cortical bone during osteotomies with trephine drills. Clin Oral Investig 18:1749–1755. https://doi.org/10.1007/s00784-013-1163-4

    Article  PubMed  Google Scholar 

  29. Sener BC, Dergin G, Gursoy B et al (2009) Effects of irrigation temperature on heat control in vitro at different drilling depths. Clin Oral Implants Res 20:294–298. https://doi.org/10.1111/j.1600-0501.2008.01643.x

    Article  PubMed  Google Scholar 

  30. Draeger RW, Dirschl DR, Dahners LE (2006) Debridement of cancellous bone: A comparison of irrigation methods. J Orthop Trauma 20:692–698. https://doi.org/10.1097/BOT.0b013e31802b41e2

    Article  PubMed  Google Scholar 

  31. Huang CH, Jan LC, Li R, Shih AJ (2007) A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling—theoretical and experimental studies. Int J Heat Mass Transf 50:3265–3277. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.031

    Article  CAS  Google Scholar 

  32. Li X, Zhu W, Wang J, Deng Y (2016) Optimization of bone drilling process based on finite element analysis. Appl Therm Eng 108:211–220. https://doi.org/10.1016/j.applthermaleng.2016.07.125

    Article  Google Scholar 

  33. Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling. ASME J Manuf Sci Eng 134:021006. https://doi.org/10.1115/1.4005794

    Article  Google Scholar 

  34. Tai BL, Jessop AJ, Stephenson DA, Shih AJ (2012) Workpiece Thermal Distortion In Minimum Quantity Lubrication Deep Hole Drilling—finite element modeling and experimental validation. J Manuf Sci Eng 134:011008. https://doi.org/10.1115/1.4005432

    Article  Google Scholar 

  35. Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling. J Manuf Sci Eng Trans ASME 134. https://doi.org/10.1115/1.4005794

  36. Brandao LC, Coelho RT, Lauro CH (2011) Contribution to dynamic characteristics of the cutting temperature in the drilling process considering one dimension heat flow. In: Applied Thermal Engineering. pp 3806–3813

    Google Scholar 

  37. Fernandes AP, dos Santos MB, Guimarães G (2015) An analytical transfer function method to solve inverse heat conduction problems. Appl Math Model 39:6897–6914. https://doi.org/10.1016/j.apm.2015.02.012

    Article  Google Scholar 

  38. Ristić M, Manić M, Mišić D et al (2017) Implant material selection using expert system. Facta Univ Ser Mech Eng 15:133. https://doi.org/10.22190/FUME160723004R

    Article  Google Scholar 

  39. Babbar A, Singh P, Farwaha HS (2017) Regression model and optimization of magnetic abrasive finishing of flat brass plate. Indian J Sci Technol 10:1–7. https://doi.org/10.17485/ijst/2017/v10i31/113860

    Article  CAS  Google Scholar 

  40. Prakash C, Singh S, Pabla BS, Uddin MS (2018) Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surf Coatings Technol 346:9–18. https://doi.org/10.1016/j.surfcoat.2018.04.035

    Article  CAS  Google Scholar 

  41. Tai BL, Stephenson DA, Shih AJ (2012) An inverse heat transfer method for determining workpiece temperature in minimum quantity lubrication deep hole drilling. J Manuf Sci Eng 134:021006. https://doi.org/10.1115/1.4005794

    Article  Google Scholar 

  42. Tai BL, Palmisano AC, Belmont B et al (2015) Numerical evaluation of sequential bone drilling strategies based on thermal damage. Med Eng Phys 37:855–861. https://doi.org/10.1016/j.medengphy.2015.06.002

    Article  PubMed  Google Scholar 

  43. Orlande HRB (2011) Inverse heat transfer problems. Heat Transf. Eng. 32:715–717

    Article  CAS  Google Scholar 

  44. Kumar R, Panda SS (2013) Drilling of bone : A comprehensive review. J Clin Orthop Trauma 4:15–30. https://doi.org/10.1016/j.jcot.2013.01.002

    Article  Google Scholar 

  45. Wang G, Zhang L, Wang X, Tai BL (2016) An inverse method to reconstruct the heat flux produced by bone grinding tools. Int J Therm Sci 101:85–92. https://doi.org/10.1016/j.ijthermalsci.2015.10.021

    Article  Google Scholar 

  46. Mokhtar MM, Fawad H (2012) Bone drilling modelling and simulation techniques. In: ISBEIA 2012 - IEEE Symposium on Business, Engineering and Industrial Applications. pp 357–361

    Google Scholar 

  47. Li X, Zhu W, Wang J, Deng Y (2016) Optimization of bone drilling process based on finite element analysis. Appl Therm Eng 108:211–220. https://doi.org/10.1016/j.applthermaleng.2016.07.125

    Article  Google Scholar 

  48. Wang Y, Cao M, Zhao X et al (2014) Medical engineering & physics experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med Eng Phys 36:1408–1415. https://doi.org/10.1016/j.medengphy.2014.04.007

    Article  PubMed  Google Scholar 

  49. Wang W, Shi Y, Yang N, Yuan X (2014) Medical engineering & physics experimental analysis of drilling process in cortical bone. Med Eng Phys 36:261–266. https://doi.org/10.1016/j.medengphy.2013.08.006

    Article  PubMed  Google Scholar 

  50. Alam K, Mitrofanov AV, Silberschmidt VV (2011) Medical engineering & physics experimental investigations of forces and torque in conventional and ultrasonically-assisted drilling of cortical bone. Med Eng Phys 33:234–239. https://doi.org/10.1016/j.medengphy.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  51. Lee J, Gozen BA, Ozdoganlar OB (2012) Modeling and experimentation of bone drilling forces. J Biomech 45:1076–1083. https://doi.org/10.1016/j.jbiomech.2011.12.012

    Article  PubMed  Google Scholar 

  52. Pandey RK, Panda SS (2015) Evaluation of delamination in drilling of bone. Med Eng Phys 37:657–664. https://doi.org/10.1016/j.medengphy.2015.04.008

    Article  PubMed  Google Scholar 

  53. Alam K, Hassan E, Bahadur I (2015) Experimental measurements of temperatures in ultrasonically assisted drilling of cortical bone. Biotechnol Biotechnol Equip 29:753–757. https://doi.org/10.1080/13102818.2015.1034176

    Article  Google Scholar 

  54. Xu L, Wang C, Jiang M et al (2014) Drilling force and temperature of bone under dry and physiological drilling conditions. Chin J Mech Eng 27:1240–1248. https://doi.org/10.3901/CJME.2014.0912.151

    Article  CAS  Google Scholar 

  55. Singh G, Jain V, Gupta D (2017) Multi-objective performance investigation of orthopaedic bone drilling using Taguchi membership function. 1–7. https://doi.org/10.1177/0954411917735129

  56. Singh G, Jain V, Gupta D, Ghai A (2016) Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater 62:355–365. https://doi.org/10.1016/j.jmbbm.2016.05.015

    Article  PubMed  Google Scholar 

  57. Singh G, Jain V, Gupta D (2015) Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining. 229:225–231. https://doi.org/10.1177/0954411915576945

  58. Dahotre NB, Joshi SS (2016) Machining of bone and hard tissues

    Google Scholar 

  59. Yang M, Li C, Zhang Y et al (2017) Research on microscale skull grinding temperature field under different cooling conditions. Appl Therm Eng 126:525–537. https://doi.org/10.1016/j.applthermaleng.2017.07.183

    Article  Google Scholar 

  60. Yang M, Li C, Zhang Y et al (2017) Experimental research on microscale grinding temperature under different nanoparticle jet minimum quantity cooling. Mater Manuf Process 32:589–597. https://doi.org/10.1080/10426914.2016.1176198

    Article  CAS  Google Scholar 

  61. Le HM, Do TN, Phee SJ (2016) A survey on actuators-driven surgical robots. Sens Actuators, A Phys 247:323–354

    Article  CAS  Google Scholar 

  62. Bergeles C, Yang GZ (2014) From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng 61:1565–1576. https://doi.org/10.1109/TBME.2013.2293815

    Article  PubMed  Google Scholar 

  63. Aston G (2012) Surgical robots: Worth the investment? Hosp Heal Networks 86:38–42

    Google Scholar 

  64. Kirkpatrick K (2014) Surgical robots deliver care more precisely. Commun ACM 57:14–16. https://doi.org/10.1145/2632042

    Article  Google Scholar 

  65. Payne CJ, Yang G-Z (2014) Hand-held medical robots. Ann Biomed Eng 42:1594–1605. https://doi.org/10.1007/s10439-014-1042-4

    Article  PubMed  Google Scholar 

  66. Zhao J, Feng B, Zheng MH, Xu K (2015) Surgical robots for SPL and NOTES: A review. Minim Invasive Ther Allied Technol 24:8–17. https://doi.org/10.3109/13645706.2014.999687

    Article  PubMed  Google Scholar 

  67. Kapoor A, Li M, Taylor RH (2006) Constrained control for surgical assistant robots. In: Proceedings - IEEE International Conference on Robotics and Automation. pp 231–236

    Google Scholar 

  68. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2011, National Cancer Institute

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Babbar, A., Jain, V., Gupta, D. (2019). Neurosurgical Bone Grinding. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_7

Download citation

Publish with us

Policies and ethics