Skip to main content

Recent Advances in Additive Manufacturing of Bio-inspired Materials

  • Chapter
  • First Online:

Abstract

The changing scenario in the rapidly developing economies and industries requires bulk-scale fabrication of materials. The production of materials on such a large scale by industries requires high quality, low-cost production, and high efficiency, in order to sustain the innovative market competition. Complexities like high initial tooling, part design restrictions, bounded degree of designing freedom, and machinery cost in traditional manufacturing have led to the need of new approaches and techniques of manufacturing. To overcome these complexities, additive manufacturing (i.e. 3D Printing) has been proven to be a paramount method, which has the potential to perform all the operations in one place such as cutting, forming, bending or transforming materials and components for further assembling in one part and in short time, due to which it is also useful in biomedical applications from medicine to anthropology. Recently, the polymers have become prime choice of the materials for additive manufacturing, and various thermoplastic materials like acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) together with thermosetting polymeric materials can be easily processed by 3D printing. This chapter discusses 3D printing of various biologically inspired structures like molluscan shell and honeycomb structure with above-mentioned matrix materials and their reinforcements with synthetic and natural fibres. The developed materials were characterized via Fourier-transform infrared spectroscopy (FTIR), wear test analysis and impact strength analysis (ASTM standard). Finally, the chapter concludes with a discussion on future scope of 4D printing for additive manufacturing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fan T-X, Chow S-K, Zhang D (2009) Biomorphic mineralization: from biology to materials. Prog Mater Sci 54:542–659. https://doi.org/10.1016/j.pmatsci.2009.02.001

    Article  CAS  Google Scholar 

  2. Chen P-Y, McKittrick J, Meyers MA (2012) Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci 57:1492–1704. https://doi.org/10.1016/j.pmatsci.2012.03.001

    Article  CAS  Google Scholar 

  3. Aizenberg J, Fratzl P (2009) Biological and biomimetic materials. Adv Mater 21:387–388. https://doi.org/10.1002/adma.200803699

    Article  CAS  Google Scholar 

  4. Yadav R, Naebe M, Wang X, Kandasubramanian B (2017) Review on 3D prototyping of damage tolerant interdigitating brick arrays of Nacre. Ind Eng Chem Res 56:10516–10525. https://doi.org/10.1021/acs.iecr.7b01679

    Article  CAS  Google Scholar 

  5. Mishra N, Kandasubramanian B (2017) Biomimetic design of artificial materials inspired by iridescent nacre structure and its growth mechanism. Polym Plast Technol Eng, 1–15. https://doi.org/10.1080/03602559.2017.1326139

  6. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res Part B Appl Biomater 98B:160–170. https://doi.org/10.1002/jbm.b.31831

    Article  CAS  Google Scholar 

  7. Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Health Mater 6:1601118. https://doi.org/10.1002/adhm.201601118

    Article  CAS  Google Scholar 

  8. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253. https://doi.org/10.1021/ac403397r

    Article  CAS  PubMed  Google Scholar 

  9. Guvendiren M, Molde J, Soares RMD, Kohn J (2016) Designing biomaterials for 3D printing. ACS Biomater Sci Eng 2:1679–1693. https://doi.org/10.1021/acsbiomaterials.6b00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ho CMB, Ng SH, Li KHH, Yoon Y-J (2015) 3D printed microfluidics for biological applications. Lab Chip 15:3627–3637. https://doi.org/10.1039/C5LC00685F

    Article  CAS  PubMed  Google Scholar 

  11. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. https://doi.org/10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  12. Korde JM, Shaikh M, Kandasubramanian B (2018) Bionic prototyping of honeycomb patterned polymer composite and its engineering application. Polym Plast Technol Eng, 1–17. https://doi.org/10.1080/03602559.2018.1434667

  13. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19:485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malik A, Kandasubramanian B (2018) Flexible polymeric substrates for electronic applications. Polym Rev, 1–38 (2018). https://doi.org/10.1080/15583724.2018.1473424

  15. Mandrycky C, Wang Z, Kim K, Kim D-H (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34:422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  16. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  17. Peltola SM, Melchels FPW, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280. https://doi.org/10.1080/07853890701881788

    Article  CAS  PubMed  Google Scholar 

  18. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341. https://doi.org/10.1007/s11548-010-0476-x

    Article  CAS  PubMed  Google Scholar 

  19. Hull CW (1986) Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330

    Google Scholar 

  20. Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun J-H, Kim B-S, Chou T-W (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18:503–512. https://doi.org/10.1016/j.mattod.2015.05.001

    Article  CAS  Google Scholar 

  21. Deoray N, Kandasubramanian B (2018) Review on three-dimensionally emulated fiber-embedded lactic acid polymer composites: opportunities in engineering sector. Polym Plast Technol Eng 57:860–874. https://doi.org/10.1080/03602559.2017.1354226

    Article  CAS  Google Scholar 

  22. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458. https://doi.org/10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  24. Kruth J-P, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. CIRP Ann 47:525–540. https://doi.org/10.1016/S0007-8506(07)63240-5

    Article  Google Scholar 

  25. Ahn S, Montero M, Odell D, Roundy S, Wright PK (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8:248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  26. Wu GA, Langrana N, Sadanji R, Danforth S (2002) Solid freeform fabrication of metal components using fused deposition of metals. Mater Des 23:97–105. https://doi.org/10.1016/s0261-3069(01)00079-6

    Article  Google Scholar 

  27. Agarwala MK, Jamalabad VR, Langrana NA, Safari A, Whalen PJ, Danforth SC (1996) Structural quality of parts processed by fused deposition. Rapid Prototyp J 2:4–19. https://doi.org/10.1108/13552549610732034

    Article  Google Scholar 

  28. Bitzer T (1997) Honeycomb technology. Springer, The Netherlands

    Book  Google Scholar 

  29. Vinson JR (1999) The Behavior of Sandwich Structures of Isotropic and Composite Materials. Technomic Publishing Company Inc., Lancaster

    Google Scholar 

  30. Khatavkar N, Kandasubramanian B (2016) Composite materials for supersonic aircraft radomes with ameliorated radio frequency transmission—a review. RSC Adv 6:6709–6718. https://doi.org/10.1039/C5RA18712E

    Article  CAS  Google Scholar 

  31. Fischer S, Drechsler K, Kilchert S, Johnson A (2009) Mechanical tests for foldcore base material properties. Compos Part A Appl Sci Manuf 40:1941–1952. https://doi.org/10.1016/j.compositesa.2009.03.005

    Article  CAS  Google Scholar 

  32. Pflug J (2004) Pflug J, Verpoest I (2004) Thermoplastic folded honeycomb structure and method for the production thereof. U.S. Patent 6,726,974

    Google Scholar 

  33. Nygaard JV, Lyckegaard A (2007) Sandwich beam with a periodical and graded core manufactured using rapid prototyping. J Sandw Struct Mater 9:365–376. https://doi.org/10.1177/1099636207071609

    Article  Google Scholar 

  34. Hou Y, Tai YH, Lira C, Scarpa F, Yates JR, Gu B (2013) The bending and failure of sandwich structures with auxetic gradient cellular cores. Compos Part A Appl Sci Manuf 49:119–131. https://doi.org/10.1016/j.compositesa.2013.02.007

    Article  Google Scholar 

  35. Fíla T, Zlámal P, Jiroušek O, Falta J, Koudelka P, Kytýř D, Doktor T, Valach J (2017) Impact testing of polymer-filled auxetics using split hopkinson pressure bar. Adv Eng Mater 19:1700076. https://doi.org/10.1002/adem.201700076

    Article  CAS  Google Scholar 

  36. Hancox NL, Wells H (1979) Aluminum/carbon fiber hybrid composites. Polym Eng Sci 19:917–922. https://doi.org/10.1002/pen.760191307

    Article  CAS  Google Scholar 

  37. Hedayati R, Sadighi M, Mohammadi Aghdam M, Zadpoor A (2016) Mechanical properties of additively manufactured thick honeycombs. Mater Basel 9:613. https://doi.org/10.3390/ma9080613

    Article  CAS  Google Scholar 

  38. Türk D-A, Brenni F, Zogg M, Meboldt M (2017) Mechanical characterization of 3D printed polymers for fiber reinforced polymers processing. Mater Des 118:256–265. https://doi.org/10.1016/j.matdes.2017.01.050

    Article  CAS  Google Scholar 

  39. Yang X, Lu T, Kim T (2013) Effective thermal conductivity modelling for closed-cell porous media with analytical shape factors. Transp Porous Media 100:211–224. https://doi.org/10.1007/s11242-013-0212-4

    Article  CAS  Google Scholar 

  40. Kourtides DA, Gilwee WJ, Parker JA (1979) Thermal response of composite panels. Polym Eng Sci 19:226–231. https://doi.org/10.1002/pen.760190311

    Article  CAS  Google Scholar 

  41. Shafizadeh JE, Seferis JC (1999) High temperature thermal analysis characterization of honeycomb core. Polym Eng Sci 39:733–740. https://doi.org/10.1002/pen.11461

    Article  CAS  Google Scholar 

  42. Ajdari A, Jahromi BH, Papadopoulos J, Nayeb-Hashemi H, Vaziri A (2012) Hierarchical honeycombs with tailorable properties. Int J Solids Struct 49:1413–1419. https://doi.org/10.1016/j.ijsolstr.2012.02.029

    Article  Google Scholar 

  43. Scarpa F, Blain S, Lew T, Perrott D, Ruzzene M, Yates JR (2007) Elastic buckling of hexagonal chiral cell honeycombs. Compos Part A Appl Sci Manuf 38:280–289. https://doi.org/10.1016/j.compositesa.2006.04.007

    Article  CAS  Google Scholar 

  44. Zhang Q, Yang X, Li P, Huang G, Feng S, Shen C, Han B, Zhang X, Jin F, Xu F, Lu TJ (2015) Bioinspired engineering of honeycomb structure—using nature to inspire human innovation. Prog Mater Sci 74:332–400. https://doi.org/10.1016/j.pmatsci.2015.05.001

    Article  Google Scholar 

  45. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  46. Mirone P, Chiorboli P (1962) Infrared and Raman spectra and vibrational assignment of maleic anhydride. Spectrochim Acta 18:1425–1432. https://doi.org/10.1016/0371-1951(62)80003-4

    Article  CAS  Google Scholar 

  47. Gore PM, Dhanshetty MKB (2016) Bionic creation of nano-engineered Janus fabric for selective oil/organic solvent absorption. RSC Adv 6:111250–111260. https://doi.org/10.1039/c6ra24106a

    Article  CAS  Google Scholar 

  48. Yang CQ, Chen D, Guan J, He Q (2010) Cross-linking cotton cellulose by the combination of maleic acid and sodium hypophosphite. Ind Eng Chem Res 49:8325–8332. https://doi.org/10.1021/ie1007294

    Article  CAS  Google Scholar 

  49. Pumure I, Ford S, Shannon J, Kohen C, Mulcahy A, Frank K, Sisco S, Chaukura N (2015) Analysis of ATR-FTIR absorption-reflection data from 13 polymeric fabric materials using chemometrics. Am J Anal Chem 6:305–312. https://doi.org/10.4236/ajac.2015.64029

    Article  CAS  Google Scholar 

  50. Elnagar K, Abou Elmaaty T, Raouf S (2014) Dyeing of polyester and polyamide synthetic fabrics with natural dyes using ecofriendly technique. J Text 2014:1–8. https://doi.org/10.1155/2014/363079

    Article  Google Scholar 

  51. Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism. Can J Zool 91:349–366. https://doi.org/10.1139/cjz-2012-0333

    Article  CAS  Google Scholar 

  52. Gu GX, Takaffoli M, Buehler MJ (2017) Hierarchically enhanced impact resistance of bioinspired composites. Adv Mater 29:1700060. https://doi.org/10.1002/adma.201700060

    Article  CAS  Google Scholar 

  53. Wyzgoski MG, Yeh GSY (1974) Morphology of crazes in glassy polycarbonate. J Macromol Sci Part B 10:647–661. https://doi.org/10.1080/00222347408219412

    Article  Google Scholar 

  54. Belter JT, Dollar AM (2015) Strengthening of 3D printed fused deposition manufactured parts using the fill compositing technique. PLoS ONE 10:e0122915. https://doi.org/10.1371/journal.pone.0122915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bian J, Wang ZJ, Lin HL, Zhou X, Xiao WQ, Zhao XW (2017) Thermal and mechanical properties of polypropylene nanocomposites reinforced with nano-SiO2 functionalized graphene oxide. Compos Part A Appl Sci Manuf 97:120–127. https://doi.org/10.1016/j.compositesa.2017.01.002

    Article  CAS  Google Scholar 

  56. Stretz HA, Paul DR, Cassidy PE (2005) Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: a model system for ABS nanocomposites. Polymer (Guildf) 46:3818–3830. https://doi.org/10.1016/j.polymer.2005.03.043

    Article  CAS  Google Scholar 

  57. Jiang L, Lam YC, Tam KC, Chua TH, Sim GW, Ang LS (2005) Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer (Guildf) 46:243–252. https://doi.org/10.1016/j.polymer.2004.11.001

    Article  CAS  Google Scholar 

  58. Fu S-Y, Lauke B (1998) Fracture resistance of unfilled and calcite-particle-filled ABS composites reinforced by short glass fibers (SGF) under impact load. Compos Part A Appl Sci Manuf 29:631–641. https://doi.org/10.1016/S1359-835X(97)00111-5

    Article  Google Scholar 

  59. Chen B, Evans JRG (2008) Impact and tensile energies of fracture in polymer–clay nanocomposites. Polymer (Guildf) 49:5113–5118. https://doi.org/10.1016/j.polymer.2008.09.024

    Article  CAS  Google Scholar 

  60. Nayak SK, Yadav SN, Mohanty S (2011) Fundamentals of plastic testing. Springer, New Delhi, pp 53–62

    Google Scholar 

  61. Benítez JJ, San-Miguel MA, Domínguez-Meister S, Heredia-Guerrero JA, Salmeron M (2011) Structure and chemical state of octadecylamine self-assembled monolayers on mica. J Phys Chem C 115:19716–19723. https://doi.org/10.1021/jp203871g

    Article  CAS  Google Scholar 

  62. Karahaliou E-K, Tarantili PA (2009) Preparation of poly(acrylonitrile-butadiene-styrene)/montmorillonite nanocomposites and degradation studies during extrusion reprocessing. J Appl Polym Sci 113:2271–2281. https://doi.org/10.1002/app.30158

    Article  CAS  Google Scholar 

  63. Cai Y, Huang F, Xia X, Wei Q, Tong X, Wei A, Gao W (2010) Comparison between structures and properties of ABS nanocomposites derived from two different kinds of OMT. J Mater Eng Perform 19:171–176. https://doi.org/10.1007/s11665-009-9392-z

    Article  CAS  Google Scholar 

  64. Ambre A, Jagtap R, Dewangan B (2009) ABS nanocomposites containing modified clay. J Reinf Plast Compos 28:343–352. https://doi.org/10.1177/0731684407084254

    Article  CAS  Google Scholar 

  65. Boparai K, Singh R, Singh H (2015) Comparison of tribological behaviour for Nylon6-Al-Al2O3 and ABS parts fabricated by fused deposition modelling. Virtual Phys Prototyp 10:59–66. https://doi.org/10.1080/17452759.2015.1037402

    Article  Google Scholar 

  66. Aigbodion VS, Hassan SB, Agunsoye JO (2012) Effect of bagasse ash reinforcement on dry sliding wear behaviour of polymer matrix composites. Mater Des 33:322–327. https://doi.org/10.1016/j.matdes.2011.07.002

    Article  CAS  Google Scholar 

  67. Yang H, Jiang P (2010) Large-scale colloidal self-assembly by doctor blade coating. Langmuir 26:13173–13182. https://doi.org/10.1021/la101721v

    Article  CAS  PubMed  Google Scholar 

  68. Gatos KG, Karger-Kocsis J (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104. https://doi.org/10.1016/j.eurpolymj.2007.01.032

    Article  CAS  Google Scholar 

  69. Baran Inceoglu A, Yilmazer U (2003) Synthesis and mechanical properties of unsaturated polyester based nanocomposites. Polym Eng Sci 43:661–669. https://doi.org/10.1002/pen.10054

    Article  Google Scholar 

  70. Garofalo E, Scarfato P, Di Maio L, Incarnato L (2017) Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging. Polym Compos. https://doi.org/10.1002/pc.24323

  71. Ahmad F, Choi HS, Park MK (2015) A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol Mater Eng 300:10–24. https://doi.org/10.1002/mame.201400089

    Article  CAS  Google Scholar 

  72. Wojciechowska E, Rom M, Włochowicz A, Wysocki M, Wesełucha-Birczyńska A (2004) The use of Fourier transform-infrared (FTIR) and Raman spectroscopy (FTR) for the investigation of structural changes in wool fibre keratin after enzymatic treatment. J Mol Struct 704:315–321. https://doi.org/10.1016/j.molstruc.2004.03.044

    Article  CAS  Google Scholar 

  73. Boojaria A, Masrournia M, Ghorbani H, Ebrahimitalab A, Miandarhoie M (2015) Silane modified magnetic nanoparticles as a novel adsorbent for determination of morphine at trace levels in human hair samples by high-performance liquid chromatography with diode array detection. Forensic Sci Med Pathol 11:497–503. https://doi.org/10.1007/s12024-015-9702-8

    Article  CAS  PubMed  Google Scholar 

  74. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234. https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  75. Gañán P, Zuluaga R, Restrepo A, Labidi J, Mondragon I (2008) Plantain fibre bundles isolated from Colombian agro-industrial residues. Bioresour Technol 99:486–491. https://doi.org/10.1016/j.biortech.2007.01.012

    Article  CAS  PubMed  Google Scholar 

  76. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Bioresour Technol 100:4903–4906. https://doi.org/10.1016/j.biortech.2009.04.072

    Article  CAS  PubMed  Google Scholar 

  77. Hossain MK, Dewan MW, Hosur M, Jeelani S (2011) Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos Part B Eng 42:1701–1707. https://doi.org/10.1016/j.compositesb.2011.03.010

    Article  CAS  Google Scholar 

  78. Liu XY, Dai GC (2007) Surface modification and micromechanical properties of jute fiber mat reinforced polypropylene composites. Express Polym Lett 1:299–307. https://doi.org/10.3144/expresspolymlett.2007.43

    Article  CAS  Google Scholar 

  79. Kulkarni AG, Satyanarayana KG, Rohatgi PK, Vijayan K (1983) Mechanical properties of banana fibres (Musa sepientum). J Mater Sci 18:2290–2296. https://doi.org/10.1007/BF00541832

    Article  Google Scholar 

  80. Owolabi O, Czvikovszky T, Kovács I (1985) Coconut-fiber-reinforced thermosetting plastics. J Appl Polym Sci 30:1827–1836. https://doi.org/10.1002/app.1985.070300504

    Article  CAS  Google Scholar 

  81. Khalil HPSA, Rozman HD, Ahmad MN, Ismail H (2000) Acetylated plant-fiber-reinforced polyester composites: a study of mechanical, hygrothermal, and aging characteristics. Polym Plast Technol Eng 39:757–781. https://doi.org/10.1081/PPT-100100057

    Article  Google Scholar 

  82. Mofokeng JP, Luyt AS, Tábi T, Kovács J (2012) Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplast Compos Mater 25:927–948. https://doi.org/10.1177/0892705711423291

    Article  CAS  Google Scholar 

  83. Hirschmann RP, Kniseley RN, Fassel VA (1965) The infrared spectra of alkyl isocyanates. Spectrochim Acta 21:2125–2133. https://doi.org/10.1016/0371-1951(65)80228-4

    Article  CAS  Google Scholar 

  84. Coates J (2000) Interpretation of infrared spectra, a practical approach. Wiley, Chichester

    Google Scholar 

  85. Ebele CC, Metu Chidiebere S, Ojukwu Martin C (2016) Fourier transform infrared (FTIR) spectroscopy study on coir fibre reinforced polyester (CFRP) composites. Int J Civ Mech Energy Sci 2:20–28

    Google Scholar 

  86. Le Questel J-Y, Berthelot M, Laurence C (2000) Hydrogen-bond acceptor properties of nitriles: a combined crystallographic and ab initio theoretical investigation. J Phys Org Chem 13:347–358. https://doi.org/10.1002/1099-1395(200006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gharde, S. et al. (2019). Recent Advances in Additive Manufacturing of Bio-inspired Materials. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_2

Download citation

Publish with us

Policies and ethics