Skip to main content

Effective Heat Treatment for Improvement in Diamond-like Carbon Coatings for Biomedical Applications

  • Chapter
  • First Online:
Biomanufacturing
  • 874 Accesses

Abstract

The chapter briefly introduces the diamond-like carbon (DLC) coatings, their manufacturing techniques, revenue and applications. The DLC coatings are actively involved in the biomedical industry. Therefore, a dedicated section describes the biocompatibility of these coatings concisely. Different ways for improvement in DLC coatings performance are being researched nowadays, and heat treatment is attractive among them. The chapter introduces a fresh approach of two-step heat treatment method to improve DLC properties. A conventional heat treatment usually reduces the coating properties like sp3 fraction, hardness and increased the friction coefficient, whereas the two-step heat treatment has represented about 20% improvement in hardness and about 10% improvement in toughness simultaneously when deposited on the selected bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hainsworth SV, Uhure NJ (2007) Diamond like carbon coatings for tribology: production techniques, characterisation methods and applications. Int Mater Rev 52:153–174

    Article  CAS  Google Scholar 

  2. Götze A, Makowski S, Kunze T, Hubner M, Zellbeck H, Weihnacht V, Leson S, Beyer E, Joswig J, Seifert G, Abrasonis G, Posselt M, Fassbender J, Möller W, Gemming S, Krause M (2014) Tetrahedral amorphous carbon coatings for friction reduction of the valve train in internal combustion engines. Adv Engg Mater 16:1226–1233

    Article  Google Scholar 

  3. Decker TG, Lundie GP, Pappas DL, Welty RP, Parent CR (1994) Amorphous diamond coating of blades. US Patent US5799549A

    Google Scholar 

  4. Fukui H, Okida J, Omori N, Moriguchi H, Tsuda K (2004) Cutting performance of DLC coated tools in dry machining aluminum alloys. Surf Coat Technol 187:70–76

    Article  CAS  Google Scholar 

  5. Fung MK, Lai KH, Lai HL, Chan CY, Wong NB, Bello I, Lee CS, Lee ST (2000) Diamond-like carbon coatings applied to hard disks. Diamond Relat Mater 9:815–818

    Article  CAS  Google Scholar 

  6. Tibrewala A (2006) Piezoresistive effect in diamond-like carbon films. Cuvillier Verlag, Gottingen

    Google Scholar 

  7. Dearnaley G, Arps JH (2005) Biomedical applications of diamond-like carbon (DLC) coatings: a review. Surf Coat Tech 200:2518–2524

    Article  CAS  Google Scholar 

  8. Schmellenmeier H (1953) Die Beeinflussung on festen obserflachen durch eine ionisierte Gasatmosphare. Exp Tech Phys 1:49–68

    Google Scholar 

  9. McWilliams A (2010) Diamond, diamond-like and CBN films & coating products. BCC Research LLC, USA

    Google Scholar 

  10. Suski CA, de-Oliveira C (2012) Coating and applications In: Davim JP (ed) Tribology in manufacturing technology, materials forming, machinging and tribology, Springer, Heidelberg

    Google Scholar 

  11. Bogdanowicz R (2015) Advancements in diamond-like carbon coatings. In: Makhlouf ASH, Scharnweber D (eds) Handbook of nanoceramic and nanocomposite coatings and materials, Elsevier, pp 183–205

    Google Scholar 

  12. Grill A (2003) Diamond-like carbon coatings as biocompatible materials - an overview. Diamond Relat. Mater 12(2):166–170

    Article  CAS  Google Scholar 

  13. Thomson LA, Law FC, Rushton N, Franks J (1991) Biocompatibility of diamond-like carbon coating. Biommaterials 12:37–40

    Google Scholar 

  14. Bokros JC, Ellis WH (1970) Method of preparing an intravascular defect by implanting a pyrolytic carbon coated prosthesis. US Patent No 3,526,005

    Google Scholar 

  15. Paul R (2017) Diamond-like-carbon coatings for advanced biomedical applications. Glob J Nano 2(5):555598

    Google Scholar 

  16. Hauert R (2003) A review of modified DLC coatings for biological applications. Diamond Relat Mater 12:583–589

    Article  CAS  Google Scholar 

  17. Ruckensten E, Gourisanker SV (1984) A surface energetic criterion of blood compatibility of foreign surfaces. J Colloid Interface Sci 101:436–451

    Article  Google Scholar 

  18. Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res Part B: App Biomater 83:72–84

    Article  Google Scholar 

  19. Zia AW, Wang YQ, Lee S (2015) Effect of physical and chemical plasma etching on surface wettability of carbon fiber-reinforced polymer composites for bone plate applications. Adv Poly Technol 36(1):21480

    Google Scholar 

  20. Roy RK, Choi HW, Yi JW, Moon MW, Lee KR, Han DK, Shin JH, Kamijo A, Hasebe T (2009) Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater 5:249–256

    Article  CAS  Google Scholar 

  21. Manninen NK, Ribeiro F, Escudeiro A, Polcar T, Carvalho S, Cavaleiro A (2013) In fluence of Ag content on mechanical and tribological behavior of DLC coatings. Surf Coat Technol 232:440–446

    Article  CAS  Google Scholar 

  22. Chang YY, Wang DY (2006) Structural and electrical properties of Cr doped a-C: H films synthesized by a cathodic-arc activated deposition process. Surf Coat Technol 200:3170–3174

    Article  CAS  Google Scholar 

  23. Tang XS, Wang HJ, Feng L, Shao LX, Zou CW (2014) Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties. Appl Surf Sci 311:758–762

    Google Scholar 

  24. Liu N, Zhu H, Wei Q, Long H, Deng Z, Yu Z, Xie Y, Wang J, Zhou LMK (2017) A niobium and nitrogen co-doped dlc film electrode and its electrochemical properties. J Electrochem Soc 164:H1091–H1098

    Article  CAS  Google Scholar 

  25. Ma G, Gong S, Lin G, Zhang L, Sun G (2012) A study of structure and properties of Ti-doped DLC film by reactive magnetron sputtering with ion implantation. Appl Surf Sci 258:2045–3050

    Google Scholar 

  26. Ray SC, Pong WF, Papakonstantinou P (2016) Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: a comparative study. Thin Solid Film 640:42–47

    Article  Google Scholar 

  27. Safaie P, Eshaghi A, Bakhshi SR (2016) Optical properties of oxygen doped diamond-like carbon thin films. J Alloys compd 672:426–432

    Article  CAS  Google Scholar 

  28. Arslan A, Masjuki HH, Kalam MA, Varman M, Mufti RA, Mosarof MH, Khuong LS, Quazi MM (2016) Surface texture manufacturing techniques and tribological effect of surface texturing on cutting tool performance: a review. Crit Rev Solid State Mater Sci 41(2016):447–481

    Article  CAS  Google Scholar 

  29. Lin Y, Zia AW, Zhou ZF, Shum PW, LI KY (2017) Top of form development of diamond-like carbon (DLC) coatings with alternate soft and hard multilayer architecture for enhancing wear performance at high contact stress. Surf Coatings Technol 320:7–12

    Google Scholar 

  30. Zia AW, Zhou ZF, LI KY (2017) A preliminary wear studies of isolated carbon particles embedded diamond-like carbon coatings. Tribol Int 114:42–44

    Google Scholar 

  31. Choi WS, Joung YH, Heo J, Hong B (2012) Friction force microscopy study of annealed diamond-like carbon film. Mater Res Bull 47:2780–2783

    Article  CAS  Google Scholar 

  32. Choi WS, Hong B (2008) The effect of annealing on the properties of diamond-like carbon protective antireflection coatings. Renew Energy 33:226–231

    Article  CAS  Google Scholar 

  33. Katiyar JK, Sinha SK, Kumar A (2016) Friction and wear durability study of epoxy-based polymer (SU-8) composite coatings with talc and graphite as fillers. Wear 362:199–208

    Article  Google Scholar 

  34. Robertson J (2001) Amorphous and non-crystalline carbons. In: Delhaes P (ed) Graphite and precursors. Gordon and breach science publishers, The Netherlands

    Google Scholar 

  35. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  36. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng 37:129–281

    Article  Google Scholar 

  37. Ogwu AA, Lamberton RW, Morley S, Maguire P, McLaughlin J (1999) Characterisation of thermally annealed diamond like carbon (DLC) and silicon modified DLC films by Raman spectroscopy. Phys B 269:335–344

    Article  CAS  Google Scholar 

  38. Li JJ, Gu CZ, Peng HY, Wu HH, Zheng WT, Jin ZS (2005) Field emission properties of diamond-like carbon films annealed at different temperatures. App Surf Sci 251:236–241

    Article  CAS  Google Scholar 

  39. Nobili L, Guglielmini A (2013) Thermal stability and mechanical properties of fluorinated diamond-like carbon coatings. Surf Coat Technol 219:144–150

    Article  CAS  Google Scholar 

  40. Niakan H, Zhang C, Hu Y, Szpunar JA, Yang Q (2014) Thermal stability of diamond-like carbon–MoS2 thin films in different environments. Thin Solid Films 562:244–249

    Article  CAS  Google Scholar 

  41. Zia AW, Zhou ZF, Shum PW, LI KY (2017) The effect of two-step heat treatment on hardness, fracture toughness, and wear of different biased diamond-like carbon coatings. Surf Coat Technol 320:118–125

    Google Scholar 

  42. Meškinis Š, Čiegis A, Vasiliauskas A, Šlapikas K, Gudaitis R, Yaremchuk I, Fitio V, Bobitski Y, Tamulevičius S (2016) Annealing effects on structure and optical properties of diamond-like carbon films containing silver. Nanoscale Res Lett 11:146

    Article  Google Scholar 

  43. Buršı́ková V, Navrátil V, Zajı́čková L, Janča J (2002) Temperature dependence of mechanical properties of DLC/Si protective coatings prepared by PECVD. Mater Sci Eng A 324:251–254

    Google Scholar 

  44. Li H, Xu T, Wang C, Chen J, Liu H (2006) Annealing effect on the structure, mechanical and tribological properties of hydrogenated diamond-like carbon films. Thin Solid Films 515:2153–2160

    Article  CAS  Google Scholar 

  45. Choi HW, Gage DM, Dauskardt RH, Lee KR, Oh KH (2009) Effects of thermal annealing and Si incorporation on bonding structure and fracture properties of diamond-like carbon films. Diamond Relat Mater 18:615–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Wasy Zia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zia, A.W. (2019). Effective Heat Treatment for Improvement in Diamond-like Carbon Coatings for Biomedical Applications. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_10

Download citation

Publish with us

Policies and ethics