Skip to main content

Current Trends in Biomaterials and Bio-manufacturing

  • Chapter
  • First Online:
Biomanufacturing

Abstract

The current research work presents the critical review of current trends on the synthesis/development of biomaterials and surface modification/processing/treatment of biomaterials for biomedical application. In the first phase, the significance of biomaterial is presented. The technique for the development of porous and solid biomedical implants was discussed in detail for their successful applications. Powder metallurgical, additive manufacturing, and 3-D printing technologies were reported good potential techniques for the development of porous mechanically tuned of metallic and ceramic-based implants for medical applications. In the second phase, an innovative engineering technique for surface modification, processing, and treatment of implants was discussed to enhance the bioactivity, mechanical properties, and corrosion and wear resistance properties. Electric discharge machining, electrochemical deposition, and plasma spar deposition were reported the best and potential innovative engineering technique to improve the mechanical properties and bioactivity. The chapter also presents the future scope for the development and surface modification of biomedical implants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Natarajan S (2016) Biomimetic, bioresponsive, and bioactive materials edited by Matteo Santin and Gary J. Phillips. Mater Manuf Process 31(7):976–977

    Article  CAS  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti-based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54(3):397–425

    Article  CAS  Google Scholar 

  3. Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:1–33. https://doi.org/10.1038/boneres.2017.59

    Article  CAS  Google Scholar 

  4. Prakash C, Kansal HK, Pabla BS, Puri S, Aggarwal A (2016) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng Part B: J Eng Manuf 230(2):331–353

    Article  CAS  Google Scholar 

  5. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R: Rep 47(3–4):49–121

    Article  CAS  Google Scholar 

  6. Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol 61(2):635–655

    Article  Google Scholar 

  7. Kang CW, Fang FZ (2018) State of the art of bioimplants manufacturing: part I. Adv Manuf 6(1):20–40

    Article  CAS  Google Scholar 

  8. Kang CW, Fang FZ (2018) State of the art of bioimplants manufacturing: part II. Adv Manuf 6(1):137–154

    Article  CAS  Google Scholar 

  9. Prakash C, Kansal HK, Pabla BS, Puri S (2017) On the influence of nanoporous layer fabricated by PMEDM on β-Ti implant: biological and computational evaluation of bone-implant interface. Mater Today Proc 4(2):2298–2307

    Article  Google Scholar 

  10. Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Y (2018) A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol 95(5–8):2641–2659

    Article  Google Scholar 

  11. Raza MR, Sulong AB, Muhamad N, Akhtar MN, Rajabi J (2015) Effects of binder system and processing parameters on formability of porous Ti/HA composite through powder injection molding. Mater Des 87:386–392

    Article  CAS  Google Scholar 

  12. Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27(13):2651–2670

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, He ZY, Zhang YQ, Jiang YH, Zhou R (2016) Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity. Mater Sci Eng, C 67:104–114

    Article  CAS  Google Scholar 

  14. Torres-Sanchez C, McLaughlin J, Fotticchia A (2018) Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications. J Alloy Compd 731:189–199

    Article  CAS  Google Scholar 

  15. Cook SD, Walsh KA, Haddad JR (1985) Interface mechanics and bone growth into porous Co-Cr-Mo alloy implants. Clin Orthop Relat Res 193:271–280

    CAS  Google Scholar 

  16. Camron HU, Pilliar RM, Macnab I (1976) The rate of bone ingrowth into porous metal. J Biomed Mater Res 10(2):295–302

    Article  Google Scholar 

  17. Hofmann AA, Bloebaum RD, Bachus KN (1997) Progression of human bone ingrowth into porous-coated implants: rate of bone ingrowth in humans. Acta Orthop Scand 68(2):161–166

    Article  CAS  PubMed  Google Scholar 

  18. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res 150:263–270

    Google Scholar 

  19. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4(3):433–456

    Article  CAS  PubMed  Google Scholar 

  20. Barth E, Ronningen H, Solheim LF, Saethren B (1986) Bone ingrowth into weight‐bearing porous fiber titanium implants. Mechanical and biochemical correlations. J Orthop Res 4(3):356–361

    Google Scholar 

  21. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121(2):317–324

    Article  CAS  PubMed  Google Scholar 

  22. Clemow AJT, Weinstein AM, Klawitter JJ, Koeneman J, Anderson J (1981) Interface mechanics of porous titanium implants. J Biomed Mater Res 15(1):73–82

    Article  CAS  PubMed  Google Scholar 

  23. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ (1999) Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg 81-B(5):907 (British Volume)

    Google Scholar 

  24. Vasconcellos LMR, Leite DO, Oliveira FN, Carvalho YR, Cairo CAA (2010) Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Braz Oral Res 24:399–405

    Google Scholar 

  25. Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng, C 59:690–701

    Article  CAS  Google Scholar 

  26. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M (2002) Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med 13(4):397–401

    Article  CAS  PubMed  Google Scholar 

  27. Singh R, Singh BP, Gupta A, Prakash C (2017). Fabrication and characterization of Ti-Nb-HA alloy by mechanical alloying and spark plasma sintering for hard tissue replacements. In: IOP Conference Series: Materials Science and Engineering, vol 225, no 1. IOP Publishing, p 012051

    Google Scholar 

  28. Sharma N, Kumar K (2018) Mechanical characteristics and bioactivity of porous Ni50− x Ti50Cu x (x= 0, 5 and 10) prepared by P/M. Mater Sci Technol 34(8):934–944

    Article  CAS  Google Scholar 

  29. Sharma B, Vajpai SK, Ameyama K (2016) Microstructure and properties of beta Ti–Nb alloy prepared by powder metallurgy route using titanium hydride powder. J Alloy Compd 656:978–986

    Article  CAS  Google Scholar 

  30. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng, C 78:1246–1262

    Article  CAS  Google Scholar 

  31. Zhu SL, Yang XJ, Hu F, Deng SH, Cui ZD (2004) Processing of porous TiNi shape memory alloy from elemental powders by Ar-sintering. Mater Lett 58(19):2369–2373

    Article  CAS  Google Scholar 

  32. Zhang L, He ZY, Zhang YQ, Jiang YH, Zhou R (2016) Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity. Mater Sci Eng, C 67:104–114

    Article  CAS  Google Scholar 

  33. Prakash C, Singh S, Gupta M, Mia M, Królczyk G, Khanna N (2018) Synthesis, characterization, corrosion resistance and in-vitro bioactivity behavior of biodegradable Mg–Zn–Mn–(Si–HA) composite for orthopaedic applications. Materials 11(9):1602

    Article  PubMed Central  Google Scholar 

  34. Prakash C, Singh S, Pabla BS, Sidhu SS, Uddin MS (2018) Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering. Mater Manuf Process 1–12

    Google Scholar 

  35. Prakash C, Singh S, Abdul-Rani AM, Uddin MS, Pabla BS, Puri S (2019) Spark plasma sintering of Mg-Zn-Mn-Si-HA alloy for bone fixation devices: fabrication of biodegradable low elastic porous Mg-Zn-Mn-Si-HA alloy. In: Handbook of research on green engineering techniques for modern manufacturing. IGI Global, pp 282–295

    Google Scholar 

  36. Yazdimamaghani M, Razavi M, Vashaee D, Moharamzadeh K, Boccaccini AR, Tayebi L (2017) Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng, C 71:1253–1266

    Article  CAS  Google Scholar 

  37. Kirkland NT, Kolbeinsson I, Woodfield T, Dias GJ, Staiger MP (2011) Synthesis and properties of topologically ordered porous magnesium. Mater Sci Eng, B 176(20):1666–1672

    Article  CAS  Google Scholar 

  38. Witte F, Ulrich H, Rudert M, Willbold E (2007) Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response. J Biomed Mater Res A 81:748–756

    Article  CAS  PubMed  Google Scholar 

  39. Uddin MS, Hall C, Murphy P (2015) Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants. Sci Technol Adv Mater 16:053501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uddin MS, Rosman H, Hall C, Murphy P (2017) Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. Int J Adv Manuf Technol 90:2095–2108. https://doi.org/10.1007/s00170-016-9536-x

    Article  Google Scholar 

  41. Hedayati R, Ahmadi SM, Lietaert K, Tümer N, Li Y, Amin Yavari S, Zadpoor AA (2018) Fatigue and quasi‐static mechanical behavior of bio‐degradable porous biomaterials based on magnesium alloys. J Biomed Mater Res Part A

    Google Scholar 

  42. Bakhsheshi-Rad HR, Hamzah E, Staiger MP, Dias GJ, Hadisi Z, Saheban M, Kashefian M (2018) Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold. Mater Des 139:212–221

    Article  CAS  Google Scholar 

  43. Ghomi H, Emadi R (2018) Fabrication of bioactive porous bredigite (Ca7MgSi4O16) scaffold via space holder method. Int J Mater Res 109(3):257–264

    Article  CAS  Google Scholar 

  44. Singh S, Bhatnagar N (2018) A survey of fabrication and application of metallic foams (1925–2017). J Porous Mater 25(2):537–554

    Article  Google Scholar 

  45. Singh S, Bhatnagar N (2018) A novel approach to fabricate 3D open cellular structure of Mg10Zn alloy with controlled morphology. Mater Lett 212:62–64

    Article  CAS  Google Scholar 

  46. Dutta S, Devi KB, Roy M (2017) Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv Powder Technol 28(12):3204–3212

    Article  CAS  Google Scholar 

  47. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A (2018) Additive manufacturing of biomaterials. Prog Mater Sci 93:45–111

    Article  PubMed  Google Scholar 

  48. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components–process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  49. Wang Y, Shen Y, Wang Z et al (2010) Development of highly porous titanium scaffolds by selective laser melting. Mater Lett 64(6):674–676

    Article  CAS  Google Scholar 

  50. Pattanayak DK, Fukuda A, Matsushita T et al (2011) Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater 7(3):1398–1406

    Article  CAS  PubMed  Google Scholar 

  51. Weißmann V, Bader R, Hansmann H et al (2016) Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Mater Des 95:188–197

    Article  CAS  Google Scholar 

  52. Mueller B (2012) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Assem Autom 32(2):151–154

    Article  Google Scholar 

  53. Shipley H, McDonnell D, Culleton M, Lupoi R, O’Donnell G, Trimble D (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. Int J Mach Tools Manuf

    Google Scholar 

  54. Khorasani A, Gibson I, Awan US, Ghaderi A (2019) The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Add Manuf 25:176–186

    CAS  Google Scholar 

  55. Zhao B, Wang H, Qiao N, Wang C, Hu M (2017) Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater Sci Eng, C 70:832–841

    Article  CAS  Google Scholar 

  56. Ran Q, Yang W, Hu Y, Shen X, Yu Y, Xiang Y, Cai K (2018) Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 84:1–11

    Article  CAS  PubMed  Google Scholar 

  57. Yan C, Hao L, Hussein A, Wei Q, Shi Y (2017) Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. Mater Sci Eng, C 75:1515–1524

    Article  CAS  Google Scholar 

  58. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  CAS  Google Scholar 

  59. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49:2387–2425

    Article  CAS  Google Scholar 

  60. He J, Wan YQ, Yu JY (2005) Scaling law in electrospinning: relationship between electric current and solution flow rate. Polymer 46:2799–2801

    Article  CAS  Google Scholar 

  61. He W, Horn SW, Hussain MD (2007) Improved bioavailability of orally administered mifepristone from PLGA nanoparticles. Int J Pharm 334:173–178

    Article  CAS  PubMed  Google Scholar 

  62. Chew SY, Wen Y, Dzenis Y, Leong KW (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chew SY, Hufnagel TC, Lim CT, Leong KW (2006) Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 17:3880–3891

    Article  PubMed  PubMed Central  Google Scholar 

  64. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  PubMed  Google Scholar 

  66. Doustgani A, Vasheghani-Farahani E, Soleimani M (2013) Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering. Nanomed J 1(1):20–27

    CAS  Google Scholar 

  67. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci 28(16):1797–1825 (Polymer edition)

    Article  CAS  Google Scholar 

  68. Yao J, Bastiaansen CW, Peijs T (2014) High strength and high modulus electrospun nanofibers. Fibers 2(2):158–186

    Article  CAS  Google Scholar 

  69. Petrík S (2011) Industrial production technology for nanofibers. Nanofibers–production, properties and functional applications, p 1

    Google Scholar 

  70. Esmaeilzadeh I et al (2015) A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber. Int J Ind Chem 6(3):193–211

    Article  CAS  Google Scholar 

  71. Dubský M et al (2012) Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing. J Mater Sci Mater Med 23(4):931–941

    Article  PubMed  CAS  Google Scholar 

  72. Brown TD et al (2012) Design and fabrication of tubular scaffolds via direct writing in a melt electrospinning mode. Biointerphases 7(1):13

    Article  CAS  PubMed  Google Scholar 

  73. Muerza-Cascante ML et al (2014) Melt electrospinning and its technologization in tissue engineering. Tissue Eng Part B: Rev 21(2):187–202

    Article  CAS  Google Scholar 

  74. Mota C et al (2013) Melt electrospinning writing of three-dimensional star poly (ϵ-caprolactone) scaffolds. Polym Int 62(6):893–900

    Article  CAS  Google Scholar 

  75. Gazzarri M et al (2013) Fibrous star poly (ε-caprolactone) melt-electrospun scaffolds for wound healing applications. J Bioact Compatible Polym 28(5):492–507

    Article  CAS  Google Scholar 

  76. Li X et al (2012) Preparation and characterization of PLLA/nHA nonwoven mats via laser melt electrospinning. Mater Lett 73:103–106

    Article  CAS  Google Scholar 

  77. Kim SJ et al (2010) Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds. Polymer 51(6):1320–1327

    Article  CAS  Google Scholar 

  78. Asri RIM, Harun WSW, Hassan MA, Ghani SAC, Buyong Z (2016) A review of hydroxyapatite-based coating techniques: Sol–gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 57:95–108

    Article  CAS  PubMed  Google Scholar 

  79. Gurrappa I, Binder L (2008) Electrodeposition of nanostructured coatings and their characterization—a review. Sci Technol Adv Mater 9(4):043001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bicelli LP, Bozzini B, Mele C, D’Urzo L (2008) A review of nanostructural aspects of metal electrodeposition. Int J Electrochem Sci 3(4):356–408

    CAS  Google Scholar 

  81. Qiu D, Yang L, Yin Y, Wang A (2011) Preparation and characterization of hydroxyapatite/titania composite coating on NiTi alloy by electrochemical deposition. Surf Coat Technol 205(10):3280–3284

    Article  CAS  Google Scholar 

  82. Qiu D, Wang A, Yin Y (2010) Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition. Appl Surf Sci 257(5):1774–1778

    Article  CAS  Google Scholar 

  83. Peng P, Kumar S, Voelcker NH, Szili E, Smart RSC, Griesser HJ (2006) Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J Biomed Mater Res Part A: An Official J Soc Biomater. The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 76(2):347–355

    Google Scholar 

  84. Kar A, Raja KS, Misra M (2006) Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf Coat Technol 201(6):3723–3731

    Article  CAS  Google Scholar 

  85. Saremi M, Golshan BM (2007) Microstructural study of nano hydroxyapatite coating obtained by pulse electrodeposition process on Ti–6Al–4V. Trans IMF 85(2):99–102

    Article  CAS  Google Scholar 

  86. Dos Santos EA, Moldovan MS, Jacomine L, Mateescu M, Werckmann J, Anselme K, Mille P, Pelletier H (2010) Oriented hydroxyapatite single crystals produced by the electrodeposition method. Mater Sci Eng, B 169(1–3):138–144

    Article  CAS  Google Scholar 

  87. Park KH, Kim SJ, Hwang MJ, Song HJ, Park YJ (2017) Pulse electrodeposition of hydroxyapatite/chitosan coatings on titanium substrate for dental implant. Colloid Polym Sci 295(10):1843–1849

    Article  CAS  Google Scholar 

  88. Gopi D, Shinyjoy E, Sekar M, Surendiran M, Kavitha L, Kumar TS (2013) Development of carbon nanotubes reinforced hydroxyapatite composite coatings on titanium by electrodeposition method. Corros Sci 73:321–330

    Article  CAS  Google Scholar 

  89. Yan L, Xiang Y, Yu J, Wang Y, Cui W (2017) Fabrication of antibacterial and antiwear hydroxyapatite coatings via in situ chitosan-mediated pulse electrochemical deposition. ACS Appl Mater Interfaces 9(5):5023–5030

    Article  CAS  PubMed  Google Scholar 

  90. Lee CK (2012) Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO2 composite coatings on anodic Ti–6Al–4V substrate for biomedical applications. Mater Sci Eng, B 177(11):810–818

    Article  CAS  Google Scholar 

  91. Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang X (2015) Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 5(22):17076–17086

    Article  CAS  Google Scholar 

  92. Saremi M, Golshan BM (2007) Microstructural study of nano hydroxyapatite coating obtained by pulse electrodeposition process on Ti–6Al–4V. Trans IMF 85(2):99–102

    Article  CAS  Google Scholar 

  93. Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in Electrical Discharge Machining (EDM). Int J Mach Tools Manuf 47:1214–1228

    Article  Google Scholar 

  94. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24(9):3622–3633

    Article  CAS  Google Scholar 

  95. Peng PW, Ou KL, Lin HC, Pan YN, Wang CH (2010) Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J Alloy Compd 492(1–2):625–630

    Article  CAS  Google Scholar 

  96. Bin TC, Xin LD, Zhan W, Yang G (2011) Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Appl Surf Sci 257(15):6364–6371

    Article  CAS  Google Scholar 

  97. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Potential of powder mixed electric discharge machining to enhance the wear and tribological performance of β-Ti implant for orthopedic applications. J Nanoeng Nanomanuf 5(4):261–269

    Article  CAS  Google Scholar 

  98. Prakash C, Kansal HK, Pabla BS, Puri S (2017) Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater Manuf Process 32(3):274–285

    Article  CAS  Google Scholar 

  99. Prakash C, Kansal HK, Pabla BS, Puri S (2016) Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J Mech Sci Technol 30(9):4195–4204

    Article  Google Scholar 

  100. Prakash C, Kansal HK, Pabla BS, Puri S (2016) Powder mixed electric discharge machining: an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopedics application. J Comput Inf Sci Eng 16(4):041006

    Article  Google Scholar 

  101. Prakash C, Uddin MS (2017) Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf Coat Technol 326:134–145

    Article  CAS  Google Scholar 

  102. Xie ZJ, Mai YJ, Lian WQ, He SL, Jie XH (2016) Titanium carbide coating with enhanced tribological properties obtained by EDC using partially sintered titanium electrodes and graphite powder mixed dielectric. Surf Coat Technol 300:50–57

    Article  CAS  Google Scholar 

  103. Arun M, Duraiselvam V, Senthilkumar R (2014) Synthesis of electric discharge alloyed Nickel-Tungsten coating on tool steel and its tribological studies. Mater Des 63:257–262

    Article  CAS  Google Scholar 

  104. Ekmekci N, Ekmekci B (2015) Electrical discharge machining of Ti6Al4V in hydroxyapatite powder mixed dielectric liquid. Mater Manuf Process. https://doi.org/10.1080/10426914.2015.1090591

  105. Ou SF, Wang CY (2016) Fabrication of a hydroxyapatite-containing coating on Ti–Ta alloy by electrical discharge coating and hydrothermal treatment. Surf Coat Technol 302:238–243

    Article  CAS  Google Scholar 

  106. Prakash C, Singh S, Pabla BS, Uddin MS (2018) Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy. Surf Coat Technol 2018(346):9–18. https://doi.org/10.1016/j.surfcoat.2018.04.035

    Article  CAS  Google Scholar 

  107. Wang Y, Khor K, Chang P (1998) Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants. J Therm Spray Technol 7(1):50–57

    Article  CAS  Google Scholar 

  108. Khor K, Yip C, Cheang P (1997) Ti-6Al-4V/Hydroxyapatite composite coatings prepared by thermal spray techniques. J Therm Spray Technol 6(1):109–115

    Article  CAS  Google Scholar 

  109. Mostaghimi J, Chandra S (2002) Splat formation in plasma-spray coating. Pure Appl Chem 74(3):441–445

    Article  CAS  Google Scholar 

  110. Fantassi S, Vardelle M, Fauchais P, Moreau C (1992) Investigation of the splat formation versus different particulate temperatures and velocities prior to impact. In: Berndt CC (ed) Proceeding of 13th international thermal spray conference. ASM International, Materials Park, OH, USA, Florida, pp 755–760

    Google Scholar 

  111. Lu YP, Li MS, Li ST, Wang ZG, Zhu RF (2004) Plasma-sprayed hydroxyapatite+titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25(18):4393–4403

    Article  CAS  PubMed  Google Scholar 

  112. Sarao TPS, Sidhu HS, Singh H (2012) Characterization and in vitro corrosion investigations of thermal sprayed hydroxyapatite and hydroxyapatite-titania coatings on Ti alloy. Metall Mater Trans A 43(11):4365–4376

    Article  CAS  Google Scholar 

  113. Rattan V, Sidhu TS, Mittal M (2018) Study and characterization of mechanical and electrochemical corrosion properties of plasma sprayed hydroxyapatite coatings on AISI 304L Stainless Steel. In: J Biomimetics Biomater Biomed Eng, vol 35. Trans Tech Publications, pp 20–34

    Google Scholar 

  114. Rocha RC, Galdino AGDS, Silva SND, Machado MLP (2018) Surface, microstructural, and adhesion strength investigations of a bioactive hydroxyapatite-titanium oxide ceramic coating applied to Ti-6Al-4V alloys by plasma thermal spraying. Mater Res 21(4)

    Google Scholar 

  115. Yao H-L, Hu X-Z, Bai X-B, Wang H-T, Chen Q-Y, Ji G-C (2018) Comparative study of HA/TiO2 and HA/ZrO2 composite coatings deposited by high-velocity suspension flame spray (HVSFS). Surf Coat Technol 351:177–187

    Article  CAS  Google Scholar 

  116. Hameed P, Gopal V, Bjorklund S, Ganvir A, Sen D, Markocsan N, Manivasagam G (2019) Axial suspension plasma spraying: an ultimate technique to tailor Ti6Al4V surface with HAp for orthopaedic applications. Colloids Surf B: Biointerfaces 173:806–815

    Article  CAS  PubMed  Google Scholar 

  117. Sarao TPS, Singh H, Singh H (2018) Enhancing biocompatibility and corrosion resistance of Ti-6Al-4V alloy by surface modification route. J Therm Spray Technol 1–13

    Google Scholar 

  118. Sarkar M, Jain VK (2017) Nanofinishing of freeform surfaces using abrasive flow finishing process. Proc Inst Mech Eng Part B: J Eng Manuf 231(9):1501–1515

    Article  Google Scholar 

  119. Ghosh G, Sidpara A, Bandyopadhyay PP (2018) Review of several precision finishing processes for optics manufacturing. J Micromanuf, p 2516598418777315

    Google Scholar 

  120. Jain VK (2016) Nanofinishing: an introduction. In: Nanofinishing science and technology. CRC Press, pp 23–46

    Google Scholar 

  121. Jain VK (ed) (2016) Nanofinishing science and technology: basic and advanced finishing and polishing processes. CRC Press

    Google Scholar 

  122. Li S, Wang Z, Wu Y (2008) Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. J Mater Process Technol 205(1–3):34–41

    Article  CAS  Google Scholar 

  123. Kuhar M, Funduk N (2005) Effects of polishing techniques on the surface roughness of acrylic denture base resins. J Prosthet Dent 93(1):76–85

    Article  CAS  PubMed  Google Scholar 

  124. Zaborski S, Sudzik A, Wołyniec A (2011) Electrochemical polishing of total hip prostheses. Arch Civ Mech Eng 11(4):1053–1062

    Article  Google Scholar 

  125. Cheung C, Ho L, Charlton P et al (2010) Analysis of surface generation in the ultraprecision polishing of freeform surfaces. Pro Inst Mech Eng Part B J Eng Manuf 224(1):59–73

    Article  Google Scholar 

  126. Shiou FJ, Chen CH (2003) Freeform surface finish of plastic injection mold by using ball-burnishing process. J Mater Process Technol 140(1–3):248–254

    Article  CAS  Google Scholar 

  127. Jain VK (2008) Abrasive-based nano-finishing techniques: an overview. Mach Sci Technol 12(3):257–294

    Article  CAS  Google Scholar 

  128. Ohmori H, Li W, Makinouchi A, Bandyopadhyay BP (2000) Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing. J Mater Process Technol 98(3):322–327

    Article  Google Scholar 

  129. Zhang D, Li C, Jia D et al (2014) Grinding model and material removal mechanism of medical nanometer zirconia ceramics. Recent Pat Nanotechnol 8(1):2–17

    Article  CAS  PubMed  Google Scholar 

  130. Ohmori H, Nakagawa T (1995) Analysis of mirror surface generation of hard and brittle materials by ELID (electronic inprocess dressing) grinding with superfine grain metallic bond wheels. CIRP Ann Manuf Technol 44(1):287–290

    Article  Google Scholar 

  131. Kotani H, Komotori J, Mizutani M et al (2009) Surface finishing and modification for cobalt-chromium-molybdenum alloy by electrolytic in-process dressing (ELID) grinding. In: 5th international conference on leading edge manufacturing in 21st century, LEM 2009

    Google Scholar 

  132. Kotani H, Komotori J, Naruse T et al (2013) Development of a new grinding system for finishing of hemispherical inside surface. Int J Nanomanuf 9(1):77–86

    Article  Google Scholar 

  133. Baghel P, Singh S, Nagdeve L, Jain VK, Sharma ND (2015) Preliminary investigations into finishing of artificial dental crown. Int J Precis Technol 5(3–4):229–245

    Article  Google Scholar 

  134. Nagdeve L, Jain VK, Ramkumar J (2016) Experimental investigations into nano-finishing of freeform surfaces using negative replica of the knee joint. Procedia CIRP 42:793–798

    Article  Google Scholar 

  135. Sarkar M, Jain VK (2017) Nanofinishing of freeform surfaces using abrasive flow finishing process. Proc Inst Mech Eng Part B: J Eng Manuf 231(9):1501–1515

    Article  Google Scholar 

  136. Sidpara AM, Jain VK (2012) Nanofinishing of freeform surfaces of prosthetic knee joint implant. Proc Inst Mech Eng Part B: J Eng Manuf 226(11):1833–1846

    Article  CAS  Google Scholar 

  137. Nagdeve L, Jain VK, Ramkumar J (2016) Experimental investigations into nano-finishing of freeform surfaces using negative replica of the knee joint. Proc CIRP 42:793–798

    Article  Google Scholar 

  138. Nagdeve L, Jain VK, Ramkumar J (2018) Differential finishing of freeform surfaces (knee joint) using R-MRAFF process and negative replica of workpiece as a fixture. Mach Sci Technol 22(4):671–695

    Article  Google Scholar 

  139. Kumar S, Jain VK, Sidpara A (2015) Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis Eng 42:165–178

    Article  Google Scholar 

  140. Barman A, Das M (2018) Nano-finishing of bio-titanium alloy to generate different surface morphologies by changing magnetorheological polishing fluid compositions. Precis Eng 51:145–152

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chander Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, H., Singh, S., Prakash, C. (2019). Current Trends in Biomaterials and Bio-manufacturing. In: Prakash, C., et al. Biomanufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-13951-3_1

Download citation

Publish with us

Policies and ethics