Skip to main content

Coral and Cnidarian Welfare in a Changing Sea

  • Chapter
  • First Online:
Book cover The Welfare of Invertebrate Animals

Part of the book series: Animal Welfare ((AWNS,volume 18))

  • 1204 Accesses

Abstract

Coral reefs worldwide are currently threatened by anthropogenic Global Climate Change (GCC) and local environmental degradation and, unequivocally, need protection. Coral reefs constitute one of the oldest, most diverse, and important marine communities. They are mainly formed by tiny, primitive, calcifying, Cnidarian invertebrates, the scleractinian corals, and provide substantial ecological services to other marine communities, coastal protection, food, and economic and social benefits to humans. Cnidarians and other reef invertebrates are exploited by the marine aquarium trade, but their capture, transport, and maintenance in captivity (for research or exhibition) are not regulated by any welfare provisions. Traditional principles of animal welfare are not easily applicable to wildlife, much less to simpler organisms such as cnidarians, but arguments could be made since scleractinian corals, as most invertebrates, are highly sensitive to changes in environmental conditions and display stressful physiological and/or behavioral responses. Higher than normal temperatures, for example, elicit the expulsion of their algal symbionts (i.e., bleaching), increase mucus production, and/or adjust metabolic pathways and physiological functions, to enhance survivorship. Global Climate Change is stressing marine animals and is threatening the health of the oceans. Welfare considerations to at least those cnidarians that function as foundation or keystone species could add up and help protect these communities from further decline. How we approach the solutions to the problems generated by the increasing human needs must include a change in attitude, from being mostly “reactive,” which is costly and difficult, to being more preventive/proactive. We believe that approaches combining both conservation and welfare principles could be developed and implemented to increase the survivorship and good health of ecologically and economically important marine invertebrates. Besides convincing scientists, and mostly animal welfare scientists, that corals should be included in our “circle of compassion,” the most essential component for this to work is education. An educated population who understand the importance of our interaction with the natural world will help to institutionalize welfare principles to increase protection and to reduce, or stop, the current declining trends of coral reefs and other marine communities. This would enhance the possibilities of a successful recovery of these important communities so we can continue using them in a sustainable way and, more importantly, preserve them for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamo S (2012) The effects of the stress response on immune function in invertebrates: an evolutionary perspective on an ancient connection. Horm Behav 62:324–330

    Article  CAS  PubMed  Google Scholar 

  • Adams B, Larson J (2011) Legislative history of the Animal Welfare Act: introduction. United States Department of Agriculture. National Agricultural Library

    Google Scholar 

  • American Veterinary Medical Association. https://www.avma.org/public/AnimalWelfare/Pages/default.aspx

  • Andrews PLR, Wilson-Sanders SE, Smith SA, Scimeca JS, Mainous ME, Elwood MR, Crook RJ, Walters ET, Cooper JE, Mather JA, Harvey-Clark C (2011) Spineless wonders: welfare and use of invertebrates in the laboratory and classroom. Inst Lab Anim Res J 52:121–220

    Article  CAS  Google Scholar 

  • Aronson RB, Precht WF (2001) White-band disease and the changing face of Caribbean coral reefs. In: Porter JW, editor. The ecology and etiology of newly emerging marine diseases, Hydrobiologia, vol. 460. Kluwer, pp 25–38

    Google Scholar 

  • Aronson R, Bruckner A, Moore J, Precht B, Weil E (2008a) Acropora cervicornis and Acropora palmata. The IUCN red list of threatened species 2008: e.T132970A3515504

    Google Scholar 

  • Aronson R, Bruckner A, Moore J, Precht B, Weil E (2008b) Dendrogyra cylindrus. The IUCN red list of threatened species 2009: e.T132970A3515504

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  CAS  PubMed  Google Scholar 

  • Bekoff M (2002) Minding animals: awareness, emotions, and heart. Oxford University Press, New York

    Google Scholar 

  • Bertness MD, Bruno JF, Sulliman BR, Stachowics JJ (eds) (2014) Marine community ecology and conservation. Sinauer, Sunderland. 566 pp

    Google Scholar 

  • Birkeland C (2015) Coral reefs in the Anthropocene. In: Birkeland C (ed) Coral reefs in the Anthropocene. Springer, Dordrecht

    Chapter  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw GA, Schore AN, Brown JL, Poole JH, Moss CJ (2005) Elephant breakdown: social trauma: early disruption of attachment can affect the physiology, behaviour and culture of animals and humans over generations. Nature 433:807

    Article  CAS  PubMed  Google Scholar 

  • Bruckner AW (2000) New threat to coral reefs: trade in coral organisms. Issues Sci Technol 17:63–68

    Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the indo-pacific: timing, extent, and sub regional comparisons. PLoS One 2:e711. www.plosone.org

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Selig ER, Casey KS, Page CA, Willis BL (2007) Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol 5:e124. https://doi.org/10.1371/journal.pbio.0050124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Petes L, Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056–1061

    Article  Google Scholar 

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate change influences on marine infectious diseases: implications for management and society. Annu Rev Mar Sci 6:249–277

    Article  Google Scholar 

  • Burke L, Reytar K, Spalding M, Perry A (2011) Reef at risk revisited. World Resources Institute, Washington DC. 114 pp

    Google Scholar 

  • Carere C, Woods JB, Mather J (2011) Species differences in captivity: where are the invertebrates? Trends Ecol Evol 26:211. https://doi.org/10.1016/j.tree.2011.01.003

    Article  PubMed  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Weil E et al (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Chindarkar N (2012) Gender and climate change-induced migration: proposing a framework for analysis. Environ Res Lett 7:1–7

    Article  Google Scholar 

  • Couch CS, Weil E, Harvell CD (2013) Temporal dynamics and plasticity in the cellular immune response of the sea fan coral, Gorgonia ventalina. Mar Biol 160:2449–2460. https://doi.org/10.1007/s00227-013-2240-6

    Article  CAS  Google Scholar 

  • Crook RJ (2013) The welfare of invertebrate animals in research: can science’s next generation improve their lot? Postdoc J 1:9–20

    Google Scholar 

  • Czech B (2000) Economic growth as the limiting factor for wildlife conservation. Wildl Soc Bull 28:4–15

    Google Scholar 

  • Darimont CT, Carlson SM, Kinnison MT, Paquet PC, Reimchen TE, Wilmers CC (2009) Human predators outpace other agents of trait change. Proc Natl Acad Sci 106:952–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubinsky S, Stambler N (eds) (2011) Coral reefs, and ecosystem in transition. Springer, Dordrecht. 552 pp

    Google Scholar 

  • Elwood RW (2011) Pain and suffering in invertebrates? ILAR J 52:165–184

    Article  Google Scholar 

  • Elwood RW (2019) Assessing the potential for pain in crustaceans and other invertebrates. In: Carere C, Mather JA (eds) The welfare of invertebrate animals. Springer, Cham, pp 147–178

    Google Scholar 

  • Elwood RW, Barr S, Patterson L (2009) Pain and stress in crustaceans? Appl Anim Behav Sci 118:128–136. https://doi.org/10.1016/j.applanim.02.018

    Article  Google Scholar 

  • Endangered Species Act (ESA). NOAA Fisheries. NOAA Fisheries, 08 Aug. 2013

    Google Scholar 

  • Flynn K, Weil E (2009) Variability of Aspergillosis in Gorgonia ventalinain La Parguera, PuertoRico. Caribb J Sci 45:215–220

    Article  Google Scholar 

  • Fraser D, Weary DM, Pajor EA, Milligan BN (1997) A scientific conception of animal welfare that reflects ethical concerns. Anim Welf 6:187–205

    Google Scholar 

  • Fuess LE, Pinzon CJH, Weil E, Grinshpon RD, Mydlarz LD (2017) Life or death: disease-tolerant coral species activate autophagy following immune challenge. Proc R Soc B 284:20170771. https://doi.org/10.1098/rspb.2017.0771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galliot B, Quiquand M, Ghila L, de Rosa R, Miljkovic-Licina M, Chera S (2009) Origins of neurogenesis, a cnidarian view. Dev Biol 332:2–24

    Article  CAS  PubMed  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  CAS  PubMed  Google Scholar 

  • Goffredo S, Dubinsky Z (eds) (2016) The Cnidaria, past present and future. Springer, Cham. 855 pp

    Google Scholar 

  • Goffredo S, Dubinsky Z (eds) (2017) The Cnidaria: past, present and future. Springer, Berlin, 837p

    Google Scholar 

  • Goodall J, Bekoff M (2002) The ten trusts: what we must do to care for the animals we love. San Francisco, Harper Collins

    Google Scholar 

  • Groner M, Maynard J, Breyta R, Carnegie B, Dobson A, Friedman CS, Froelich B, Garren M, Gulland FMD, Heron SF, Noble RT, Revie CW, Shields JD, Vanderstichel R, Weil E, Wyllie-Echeverria S, Harvell CD (2016) Managing marine disease emergencies in an era of rapid change. Philos Trans R Soc B 371:20150364. https://doi.org/10.1098/rstb.2015.0364

    Article  CAS  Google Scholar 

  • Harvell CD, Burkholder KK, Colwell JM, Epstein RR, Grimes PR, Hofmann DJ, Lipp EE, Osterhaus EK, Overstreet ADME, Porter RM, Smith JW, Vasta GW (1999) Emerging marine diseases – climate links and anthropogenic factors. Science 285:1505–1510

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Ecology—climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Harvell CD, Aronson R, Baron N, Connell J, Dobson A, Ellner S, Gerber K, Kim K, Kuris A, McCallum H, Lafferty K, McKay B, Porter J, Pascual M, Smith G, Sutherland K, Ward J (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Front Ecol Environ 2:375–382

    Article  Google Scholar 

  • Harvell CD, Jordan-Dahlgren E, Merkel S, Rosenberg E, Raymundo L, Smith G, Weil E, Willis B (2007) Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20:172–195

    Article  Google Scholar 

  • Harvell CD, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90:912–920

    Article  PubMed  Google Scholar 

  • Harvey-Clark C (2007) IACUC challenges in invertebrate research. ILAR J 52:21320

    Google Scholar 

  • Hendry AP, Farrugia TJ, Kinnison MT (2008) Human influences on the rate of phenotypic change in wild animal populations. Mol Ecol 17:20–29

    Article  PubMed  Google Scholar 

  • Hoegh-Guldberg O (2010) Coral reef ecosystems and anthropogenic climate change. Reg Environ Chang 11:215–227

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. https://doi.org/10.1126/science.1189930

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. https://doi.org/10.1126/science.1152509

    Article  CAS  PubMed  Google Scholar 

  • Horvath K, Angeletti D, Nascetti G, Carere C (2013) Invertebrate welfare: an overlooked issue. Ann Ist Super Sanita 49:9–17

    PubMed  Google Scholar 

  • Hubbard DK, Rogers CS, Lipps JH, Stanley GD (eds) (2016) Coral reefs at the crossroads. Springer, Dordrecht. 300 pp

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase shifts and large scale degradation of a Caribbean coral reef. Science 265:1547–1549

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR et al (2004) Climate change, human impacts and the resilience of coral reefs. Science 301:929–933

    Article  CAS  Google Scholar 

  • Hughes TP, Graham NA, Jackson JBC, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol 25:633–642

    Article  PubMed  Google Scholar 

  • Hughes TP, Kerry TP, Álvarez-Noriega M, Álvarez-Romero J, Anderson KD, Baird AH et al (2017a) Global warming and recurrent mass bleaching of corals. Nature 543:373–377. https://doi.org/10.1038/nature21707

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Barnes MI, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IE, Lough JM, Morrison TH, Palumbi TR, van Nes E, Scheffer M (2017b) Coral reefs in the Anthropocene. Nature 543. https://doi.org/10.1038/nature/March2017

  • Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2019) Global warming transforms coral reef assemblages. Nat Lett. https://doi.org/10.1038/s41586-018-0041

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IUCN Red list of threatened species. IUCN

    Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL, Lam VY (eds) (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network, UCN, Gland

    Google Scholar 

  • Jones AM, Thornhill DJ, Roeloofs AJ (2017) Harvesting and collection of animal forest species. In: Rossi S, Gori A, Bramanti L, Orejas C (eds) Marine animal forests. Springer, Cham, pp 1025–1040

    Chapter  Google Scholar 

  • Kass-Simon G, Pierobon P (2007) Cnidarian chemical neurotransmission, an updated overview. Comp Biochem Physiol A Mol Integr Physiol 146:9–25. PMID 17101286. https://doi.org/10.1016/j.cbpa.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  • Kellert SR (1993) Values and perceptions of invertebrates. Conserv Biol 7:845–855. https://doi.org/10.1046/j.1523-1739.740845.x

    Article  Google Scholar 

  • Kolbert E (2014) The sixth extinction, an unnatural history. Henry Holt and Co, New York

    Google Scholar 

  • Lafferty KD, Hofmann EE (2016) Marine disease impacts, diagnosis, forecasting, management and policy. Phil Trans R Soc B 371:20150200. https://doi.org/10.1098/rstb.2015.0200

    Article  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM (2015) Infectious diseases affect marine fisheries and aquaculture economics. Annu Rev Mar Sci 7:471–496. https://doi.org/10.1146/annurev-marine-010814-015646

    Article  Google Scholar 

  • Lane DR, Ready RC, Buddemeier RW, Martinich JA, Shouse KC, Wobus CW (2013) Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios. PLoS One 8:1–13. https://doi.org/10.1371/journal.pone.0082579. (e82579)

    Article  CAS  Google Scholar 

  • Lessios HA, Robertson DR, Cubit JD (1984) Spread of Diadema mass mortality throughout the Caribbean. Science 226:335–337

    Article  CAS  PubMed  Google Scholar 

  • Manev H, Dimitrijevic N (2004) Drosophila model for 6. in vivo pharmacological analgesia research. Eur J Pharmacol 491:207–208. https://doi.org/10.1016/j.ejphar.03.030

    Article  CAS  PubMed  Google Scholar 

  • Mason JJ (2010) Species differences in response to captivity: stress, welfare and the comparative method. Trends Ecol Evol 25:713–721

    Article  PubMed  Google Scholar 

  • Mather JA (2001) Animal suffering: an invertebrate perspective. J Appl Anim Welf Sci 4:151–156

    Article  Google Scholar 

  • Mather JA, Anderson RC (2007) Ethics and invertebrates: a cephalopod perspective. Dis Aquat Org 75:119–129

    Article  Google Scholar 

  • Mather JA, Anderson RC, Wood JB (2010) Octopus: ocean’s intelligent invertebrate. Timber Press, Portland

    Google Scholar 

  • McClanahan TR, Weil E, Cortés J, Baird A, Ateweberhan M (2009) Consequences of coral bleaching for sessile organisms. In: van Oppen M, Lough J (eds) Coral bleaching: patterns, processes, causes and consequences, Ecological studies. Springer, Berlin, pp 121–138

    Chapter  Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7:770–801

    Article  Google Scholar 

  • Miller J, Muller E, Rogers CS, Waara R, Atkinson A, Whelan KRT, Patterson M, Witcher B (2009) Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs 28:925–937

    Article  Google Scholar 

  • Mimura N (1999) Vulnerability of island countries in the South Pacific to sea level rise and climate change. Clim Res 12:137–143

    Article  Google Scholar 

  • Morgan M, Goodner K, Ross J, Poole AZ, Stepp E, Stuart CH, Wilbanks C, Weil E (2015) Development and application of molecular biomarkers for characterizing Caribbean Yellow Band Disease in Orbicella faveolata. PeerJ 3:e1371. https://doi.org/10.7717/peerj.1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumby PJ, Van Woesik R (2014) Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress. Curr Biol 24:R413–R423

    Article  CAS  PubMed  Google Scholar 

  • Mydlarz LD, Jones LE, Harvell CD (2006) Innate immunity environmental drivers and disease ecology of marine and freshwater invertebrates. Annu Rev Ecol Syst 37:251–288

    Article  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One 3:e1811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Nicholls RJ, Hanson S, Herweijer C, Patmore N, Hallegatte S, Corfee-Morlot J, Château J and Muir-Wood R (2008) Ranking port cities with high exposure and vulnerability to climate extremes: exposure estimates. OECD Environment Working Papers, No. 1. OECD Publishing, pp 1–62. https://doi.org/10.1787/011766488208

  • Paquet PC, Darimont CT (2010) Wildlife conservation and animal welfare: two sides of the same coin? Anim Welf 19:177–190. ISSN 0962-7286

    CAS  Google Scholar 

  • Park E, Hwang D, Lee J, Song J, Seo T, Won Y (2012) Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenetics Evol 62:329–345

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM (2003) Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser 264:167–171

    Article  Google Scholar 

  • Ponte G, Andrews P, Galligioni V, Pereira J, Fiorito G (2018) Cephalopod welfare, biological and regulatory aspects: an EU experience. In: Carere C, Mather JA (eds) The welfare of invertebrate animals. Springer, Cham, p XX

    Google Scholar 

  • Randal CJ, van Woesik R (2017) Some coral diseases track climate oscillations in the Caribbean. Sci Rep 7:5719. https://doi.org/10.1038/s41598-017-05763-6

    Article  CAS  Google Scholar 

  • Rhyne AL, Tlusty MF, Kaufman L (2012) Long-term trends of coral imports into the United States indicate future opportunities for ecosystem and societal benefits. Conserv Lett 5:478–485

    Article  Google Scholar 

  • Rhyne AL, Tlusty MF, Kaufman L (2013) Is sustainable exploitation of coral reefs possible? A view from the standpoint of the marine aquarium trade. Curr Opin Environ Stab 7:101–107

    Article  Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–326

    Article  PubMed  Google Scholar 

  • Rosenberg E, Loya Y (2004) Coral health and disease. Springer, Berlin. 488 pp

    Book  Google Scholar 

  • Rossi S, Gori A, Bramanti L, Orejas C (2017) Marine animal forests. Springer, Cham. 1366 pp

    Book  Google Scholar 

  • Scarponi D, Azzarone M, Kowalewski M, Huntley JW (2017) Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic. Sci Rep 7:5732. https://doi.org/10.1038/s41598-017-05979-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuldt JP, McComas KA, Byrne SE (2015) Communicating about ocean health: theoretical and practical considerations. Phil Trans R Soc B 371:20150214. https://doi.org/10.1098/rstb.2015.0214

    Article  CAS  Google Scholar 

  • Shuman CS, Hodgson G, Ambrose RF (2005) Population impacts of collecting sea anemones and anemone fish for the marine aquarium trade in the Philippines. Coral Reefs 24:564–573

    Article  Google Scholar 

  • Smith TB, Bernatchez L (2008) Evolutionary change in human-altered environments. Mol Ecol 17:1–8

    Article  PubMed  Google Scholar 

  • Stephens PR (2016) The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol Lett 19:1159–1171

    Article  PubMed  Google Scholar 

  • Stern N (2006) What is the economics of climate change? World Econ 7:1–10

    Google Scholar 

  • Stevens C (1990) Laboratory animal welfare. In: Animals and their legal rights. Animal Welfare Institute, Washington, DC, pp 66–111

    Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  CAS  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–101

    Article  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastraea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • The Convention for International Trade of Endangered Species (CITES) website. https://www.cites.org/eng/disc/what.php

  • Tissot BN, Best BA, Borneman ER, Bruckner AW, Cooper CH, D’Agnes H, Fitzgerald TP, Leland A, Lieberman S, Mathews AA, Sumaila R, Telecky TM, McGilvray F, Plankis BJ, Rhyne AL, Roberts GG, Starkhouse B, Stevenson TC (2010) How US ocean policy and market power can reform the coral reef wildlife trade. Mar Policy 34:1385–1388

    Article  Google Scholar 

  • United Nations Environment Programme Annual Report (2007) UNEP, 120pp

    Google Scholar 

  • van Oppen MJH, Lough JM (eds) (2009) Coral Bleaching, Ecological Studies, vol 205. Springer, Berlin

    Google Scholar 

  • Veron JEN, Hoegh-Guldberg O, Lenton TM et al (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Mar Pollut Bull 58:1428–1436

    Article  CAS  PubMed  Google Scholar 

  • Vitale A, Pollo S (2018) Invertebrates and humans: science, ethics, and policy. In: Carere C, Mather JA (eds) The welfare of invertebrate animals. Springer, Cham, p XX

    Google Scholar 

  • Ward JR, Lafferty KD (2004) The elusive baseline of marine disease: are diseases in ocean ecosystems increasing? PLoS Biol 2:e120

    Article  PubMed  PubMed Central  Google Scholar 

  • Weil E (2004) Coral reef diseases in the wider Caribbean. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, New York, pp 35–64

    Chapter  Google Scholar 

  • Weil E, Rogers C (2011) Coral reef diseases in the Atlantic-Caribbean. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition, pp 465–491

    Chapter  Google Scholar 

  • Weil E, Croquer A, Urreiztieta I (2009) Temporal variability and impact of coral diseases and bleaching in La Parguera, Puerto Rico from 2003–2007. Caribb J Sci 34:221–246

    Article  Google Scholar 

  • Weil E, Rogers C, Croquer A (2017) Octocoral diseases in a changing sea. In: Rossi S, Gori A, Orejas Sco del Valle C (eds) Marine animal forests: the ecology of benthic biodiversity hotspots. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5. ISBN: 978-3-319-17001-5 (online)

    Chapter  Google Scholar 

  • Wilkinson CR (2004) Status of coral reefs of the world: 2004, vol 1. Australian Institute of Marine Science, Townsville. 301 pp

    Google Scholar 

  • Wilkinson C, Souter D (2008) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville. 152 pp

    Google Scholar 

  • Wilson EO (2006) The creation: an appeal to save life on Earth. Norton, New York

    Google Scholar 

  • Woodley CM, Downs CA, Bruckner AW, Porter J, Galloway SB (eds) (2016) Diseases of coral, 1st edn. Wiley, Hoboken

    Google Scholar 

  • Wood R (1999) The ecological evolution of reefs. Annu Rev Ecol Syst 29:179–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Weil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weil, E., Weil-Allen, A., Weil, A. (2019). Coral and Cnidarian Welfare in a Changing Sea. In: Carere, C., Mather, J. (eds) The Welfare of Invertebrate Animals. Animal Welfare, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13947-6_6

Download citation

Publish with us

Policies and ethics