Skip to main content

Spider Welfare

  • Chapter
  • First Online:
Book cover The Welfare of Invertebrate Animals

Part of the book series: Animal Welfare ((AWNS,volume 18))

Abstract

Spiders with around 48,000 recorded species are major terrestrial predators and thus crucially important for ecosystem functioning. They are widely used as research models and for biodiversity displays and sometimes also kept as pets. Nevertheless, we are not aware of any legal ethical rules bound to spider welfare during rearing or research. To set ethical standards, we first need to detect and assess how spiders “perceive” the external world. Based on the current knowledge of spiders’ sensory and nervous system, it is difficult to judge whether spiders feel pain, distress and suffering, although their behaviours like thanatosis, “bailing out”, autotomy and associative avoidance learning imply so. As is now known, arthropods are not simply mini-robots as traditionally believed. Thus, spider welfare deserves more research effort, and the ethical standards for rearing or using spiders in research need to be set. Here, we describe the variety of spider physiological and behavioural characteristics and how they apply to their rearing, housing, handling and experimental use. We hope reporting these methods will help ensuring welfare and well-being of spiders in captivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amador-Vargas S, Gronenberg W, Wcislo WT, Mueller U (2015) Specialization and group size: brain and behavioral correlates of colony size in ants lacking morphological astes. Proc R Soc B Biol Sci 282:20142502

    Article  Google Scholar 

  • Animal Behaviour (2018) Guidelines for the treatment of animals in behavioural research and teaching. Anim Behav 135:I–X

    Google Scholar 

  • Barth FG (2013) A spider’s world: senses and behavior. Springer, Berlin

    Google Scholar 

  • Bednarski JV, Taylor P, Jakob EM (2012) Optical cues used in predation by jumping spiders, Phidippus audax (Araneae, Salticidae). Anim Behav 84:1221–1227

    Article  Google Scholar 

  • Bennie N, Loaring C, Bennie M, Trim S (2012) An effective method for terrestrial arthropod euthanasia. Anim Technol Welf 215:4237–4241

    Google Scholar 

  • Benson-Amram S, Dantzer B, Stricker G, Swanson EM, Holekamp KE (2016) Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad Sci 113:2532–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilde T, Tuni C, Elsayed R, Pekár S, Toft S (2006) Death feigning in the face of sexual cannibalism. Biol Lett 2:23–25

    Article  PubMed  Google Scholar 

  • Blamires SJ, Hochuli DF, Thompson MB (2009) Prey protein influences growth and decoration building in the orb web spider Argiope keyserlingi. Ecol Entomol 34:545–550

    Article  Google Scholar 

  • Blamires SJ, Sahni V, Dhinojwala A, Blackledge TA, Tso IM (2014) Nutrient deprivation induces property variations in spider gluey silk. PLoS One 9:e88487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol A 145:227–239

    Article  Google Scholar 

  • Carere C, Maestripieri D (2013) Animal personalities: behavior, physiology, and evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Carere C, Wood JB, Mather J (2011) Species differences in captivity: where are the invertebrates? Trends Ecol Evol 26:211

    Article  PubMed  Google Scholar 

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Cooper JE (2011) Anesthesia, analgesia, and euthanasia of invertebrates. ILAR J 52:196–204

    Article  CAS  PubMed  Google Scholar 

  • Corral-López A, Bloch NI, Kotrschal A, Van Der Bijl W, Buechel SD, Mank JE, Kolm N (2017) Female brain size affects the assessment of male attractiveness during mate choice. Sci Adv 3:e1601990

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards GB, Jackson RR (1994) The role of experience in the development of predatory behaviour in Phidippus regius, a jumping spider (Araneae, Salticidae) from Florida. N Z J Zool 21:269–277

    Article  Google Scholar 

  • Eisner T, Camazine S (1983) Spider leg autotomy induced by prey venom injection: an adaptive response to “pain”? Proc Natl Acad Sci 80:3382–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elwood RW (2011) Pain and suffering in invertebrates? ILAR J 52:175–184

    Article  CAS  PubMed  Google Scholar 

  • Feinerman O, Traniello JFA (2016) Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav Ecol Sociobiol 70:1063–1074

    Article  Google Scholar 

  • Fleming PA, Muller D, Bateman PW (2007) Leave it all behind: a taxonomic perspective of autotomy in invertebrates. Biol Rev 82:481–510

    Article  PubMed  Google Scholar 

  • Foelix RF (2011) Biology of spiders, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Gilbertson CR, Wyatt JD (2016) Evaluation of euthanasia techniques for an invertebrate species, land Snails (Succinea putris). J Am Assoc Lab Anim Sci 55:577–581

    PubMed  PubMed Central  Google Scholar 

  • Heiling AM, Herberstein ME (1999) The role of experience in web-building spiders (Araneidae). Anim Cogn 2:171–177

    Article  Google Scholar 

  • Hénaut Y, Machkour-M’Rabet S, Lachaud JP (2014) The role of learning in risk-avoidance strategies during spider-ant interactions. Anim Cogn 17:185–195

    Article  PubMed  Google Scholar 

  • Herberstein ME (2011) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Higgins L (1995) Direct evidence for trade-offs between foraging and growth in a juvenile spider. J Arachnol 23:37–43

    Google Scholar 

  • Higgins L (2007) Juvenile Nephila (Araneae, Nephilidae) use various attack strategies for novel prey. J Arachnol 35:530–534

    Article  Google Scholar 

  • Higgins L, Goodnight C (2011) Developmental response to low diets by giant Nephila clavipes females (Araneae: Nephilidae). J Arachnol 1:399–408

    Article  Google Scholar 

  • Horvath K, Angeletti D, Nascetti G, Carere C (2013) Invertebrate welfare: an overlooked issue. Ann Ist Super Sanita 49:9–17

    PubMed  Google Scholar 

  • Jackson RR (1974) Rearing methods for spiders. J Arachnol 2:53–56

    Google Scholar 

  • Jackson RR, Cross FR (2011) Spider cognition. Adv Insect Physiol 41:115–174

    Article  Google Scholar 

  • Jackson RR, Rowe RJ, Campbell GE (1992) Anti-predator defences of Psilochorus sphaeroides and Smeringopus pallidus (Araneae, Pholcidae), tropical web-building spiders. J Zool 228:227–232

    Article  Google Scholar 

  • Jakob EM, Dingle H (1990) Food level and life history characteristics in a pholcid spider (Holocnemus pluchei). Psyche 97:95–110

    Article  Google Scholar 

  • Jakob EM, Skow CD, Haberman MP, Plourde A (2007) Jumping spiders associate food with color cues in a T-Maze. J Arachnol 35:487–492

    Article  Google Scholar 

  • Jakob E, Skow C, Long S (2011) Plasticity, learning and cognition. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 307–347

    Chapter  Google Scholar 

  • Japyassú HF, Laland KN (2017) Extended spider cognition. Anim Cogn 20:375–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen K, Mayntz D, Toft S, Raubenheimer D, Simpson SJ (2011) Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Anim Behav 81:993–999

    Article  Google Scholar 

  • Jones TC, Akoury TS, Hauser CK, Neblett MF II, Linville BJ, Edge AA, Weber NO (2011) Octopamine and serotonin have opposite effects on antipredator behavior in the orb-weaving spider, Larinioides cornutus. J Comp Physiol A 197:819–825

    Article  CAS  Google Scholar 

  • Kasumovic MM, Elias DO, Punzalan D, Mason AC, Andrade MCB (2009) Experience affects the outcome of agonistic contests without affecting the selective advantage of size. Anim Behav 77:1533–1538

    Article  PubMed  PubMed Central  Google Scholar 

  • Kralj-Fišer S, Kuntner M (2012) Eunuchs as better fighters? Naturwissenschaften 99:95–101

    Article  PubMed  CAS  Google Scholar 

  • Kralj-Fišer S, Schneider JM (2012) Individual behavioural consistency and plasticity in an urban spider. Anim Behav 84:197–204

    Article  Google Scholar 

  • Kralj-Fišer S, Gregorič M, Zhang S, Li D, Kuntner M (2011) Eunuchs are better fighters. Anim Behav 81:933–939

    Article  Google Scholar 

  • Kuhn-Nentwig L, Nentwig W (2013) The immune system of spiders. In: Nentwig (ed) Spider ecophysiology. Springer, Berlin, pp 81–91

    Chapter  Google Scholar 

  • Kuntner M, Pristovšek U, Cheng RC, Li D, Zhang S, Tso IM, Liao CP, Miller JA, Kralj-Fišer S (2014) Eunuch supremacy: evolution of post-mating spider emasculation. Behav Ecol Sociobiol 69:117–126

    Article  Google Scholar 

  • Lewbart GA (2011) Invertebrate medicine, 2nd edn. Blackwell Publishing, Ames

    Book  Google Scholar 

  • Liedtke J, Schneider JM (2014) Association and reversal learning abilities in a jumping spider. Behav Processes 103:192–198

    Article  PubMed  Google Scholar 

  • Liedtke J, Redekop D, Schneider JM, Schuett W (2015) Early environmental conditions shape personality types in a jumping spider. Front Ecol Evol 3:134

    Article  Google Scholar 

  • Lomborg JP, Toft S (2009) Nutritional enrichment increases courtship intensity and improves mating success in male spiders. Behav Ecol 20:700–708

    Article  Google Scholar 

  • Long SM, Leonard A, Carey A, Jakob EM (2015) Vibration as an effective stimulus for aversive conditioning in jumping spiders. J Arachnol 43:111–114

    Article  Google Scholar 

  • Mather J (2011) Philosophical background of attitudes toward and treatment of invertebrates. ILAR J 52:205–212

    Article  CAS  PubMed  Google Scholar 

  • Merskey H, Bogduk N (1994) Classification of chronic pain: description of chronic pain syndromes and definitions of pain terms. IASP Press, Seattle

    Google Scholar 

  • Nakamura T, Yamashita S (2000) Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). J Comp Physiol 186:897–901

    Article  CAS  Google Scholar 

  • Nelson XJ, Jackson RR (2011) Flexibility in the foraging strategies of spiders. In: Herberstein ME (ed) Spider behaviour: flexibility and versatility. Cambridge University Press, Cambridge, pp 99–126

    Chapter  Google Scholar 

  • Nyffeler M, Birkhofer K (2017) An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat 104:30

    Article  CAS  Google Scholar 

  • Peckmezian T, Taylor PW (2015) Electric shock for aversion training of jumping spiders: towards an arachnid model of avoidance learning. Behav Processes 113:99–104

    Article  PubMed  Google Scholar 

  • Pizzi R (2006) Spiders. In: Lewbart GA (ed) Invertebrate medicine. Blackwell, Ames, pp 143–168

    Chapter  Google Scholar 

  • Punzo F (1997) Leg autotomy and avoidance behavior in response to a predator in the wolf spider, Schizocosa avida (Araneae, Lycosidae). J Arachnol 25:202–205

    Google Scholar 

  • Punzo F, Punzo T (2001) Monoamines in the brain of tarantulas (Aphonopelma hentzi) (Araneae, Theraphosidae): differences associated with male agonistic interactions. J Arachnol 29:388–395

    Article  Google Scholar 

  • Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561

    Article  CAS  PubMed  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  • Salomon M, Mayntz D, Lubin Y (2008) Colony nutrition skews reproduction in a social spider. Behav Ecol 19:605–611

    Article  Google Scholar 

  • Salomon M, Mayntz D, Toft S, Lubin Y (2011) Maternal nutrition affects offspring performance via maternal care in a subsocial spider. Behav Ecol Sociobiol 65:1191–1202

    Article  Google Scholar 

  • Schmidt JM, Sebastian P, Wilder SM, Rypstra AL (2012) The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One 7:e49223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skow CD, Jakob EM (2006) Jumping spiders attend to context during learned avoidance of aposematic prey. Behav Ecol 17:34–40

    Article  Google Scholar 

  • Sneddon LU, Elwood RW, Adamo SA, Leach MC (2014) Defining and assessing animal pain. Anim Behav 97:201–212

    Article  Google Scholar 

  • Steinhoff PO, Sombke A, Liedtke J, Schneider JM, Harzsch S, Uhl G (2017) The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): insights from histology, immunohistochemistry and microCT analysis. Arthropod Struct Dev 46:156–170

    Article  PubMed  Google Scholar 

  • Steinhoff PO, Liedtke J, Sombke A, Schneider JM, Uhl G (2018) Early environmental conditions affect the volume of higher-order brain centers in a jumping spider. J Zool 304:182–192

    Article  Google Scholar 

  • Suter RB, Gruenwald J (2000) Predator avoidance on the water surface? Kinematics and efficacy of vertical jumping by Dolomedes (Araneae, Pisauridae). J Arachnol 28:201–210

    Article  Google Scholar 

  • Sweeney K, Gadd RDH, Hess ZL, Mcdermott DR, Macdonald L, Cotter P, Armagost F, Chen JZ, Berning AW, Dirienzo N, Pruitt JN (2013) Assessing the effects of rearing environment, natural selection, and developmental stage on the emergence of a behavioral syndrome. Ethology 119:436–447

    Article  Google Scholar 

  • Tannenbaum J, Bennett TB (2015) Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci 54:120–132

    PubMed  PubMed Central  Google Scholar 

  • Tarsitano MS, Jackson RR (1997) Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. Anim Behav 53:257–266

    Article  Google Scholar 

  • Taylor PW, Jackson RR (2003) Interacting effects of size and prior injury in jumping spider conflicts. Anim Behav 65:787–794

    Article  Google Scholar 

  • Toft S (2013) Nutritional aspects of spider feeding. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 373–384

    Chapter  Google Scholar 

  • Toft S, Wise DH (1999) Growth, development, and survival of a generalist predator fed single- and mixed-species diets of different quality. Oecologia 119:198–207

    Article  PubMed  Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230

    Article  PubMed  Google Scholar 

  • Uetz GW, Boyle J, Hieber CS, Wilcox RS (2002) Antipredator benefits of group living in colonial web-building spiders: the “early warning” effect. Anim Behav 63:445–452

    Article  Google Scholar 

  • Venner S, Pasquet A, Leborgne R (2000) Web-building behaviour in the orb-weaving spider Zygiella x-notata: influence of experience. Anim Behav 59:603–611

    Article  CAS  PubMed  Google Scholar 

  • Vollrath F (1987) Growth, foraging and reproductive success. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 357–370

    Chapter  Google Scholar 

  • Whitehouse MEA (1997) Experience influences male-male contests in the spider Argyrodes antipodiana (Theridiidae: Araneae). Anim Behav 53:913–923

    Article  Google Scholar 

  • Widmer A (2005) Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents. J Neurosci 25:1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox RS, Jackson RR (1993) Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. Behaviour 127:21–36

    Article  Google Scholar 

  • Wilder SM, Rypstra AL (2008) Diet quality affects mating behaviour and egg production in a wolf spider. Anim Behav 76:439–445

    Article  Google Scholar 

  • World Spider Catalog (2018) World spider catalog. Version 19.5. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed 14 Nov 2018

  • Yip EC, Lubin Y (2016) Effects of diet restriction on life history in a sexually cannibalistic spider. Biol J Linn Soc 118:410–420

    Article  Google Scholar 

  • Zschokke S, Herberstein ME (2005) Laboratory methods for maintaining and studying web-building spiders. J Arachnol 33:205–213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matjaž Gregorič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kralj-Fišer, S., Gregorič, M. (2019). Spider Welfare. In: Carere, C., Mather, J. (eds) The Welfare of Invertebrate Animals. Animal Welfare, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-030-13947-6_5

Download citation

Publish with us

Policies and ethics