Skip to main content

The Links Between Osteoporosis and Sarcopenia in Women

  • Chapter
  • First Online:

Abstract

The world population is aging, so it is not uncommon that diseases associated with old age are steadily increasing. Osteoporosis and sarcopenia are two disorders that seriously impair the quality of life in the elderly. Different studies have shown that bones and muscles produce cytokines that affect each other. Bone produces sclerostin that decreases muscle mass. Muscle produces myokines, such as myostatin, interleukin-6, and monocyte chemoattractant protein-1 (MCP-1), which have a negative influence on bone metabolism. However, in recent years the paradigm of cellular senescence has developed, focusing on global aging, not only osteoporosis and sarcopenia but also multiple other chronic diseases. Senescent cells stop their growth, contributing to the depletion of stem cell proliferation and tissue aging. Senescent cells have an altered secretion pattern called senescence-associated secretory phenotype (SASP) that includes cytokines, growth factors, chemokines, matrix metalloproteinases, telomere shortening, and alterations in the desoxyribonucleic acid. SASP has been related with inflammation that leads to cellular transformation and chronic diseases. Cellular senescence has been found in bone, muscle, and other tissues. Treatment of musculoskeletal diseases involves changes in lifestyles and/or drugs that modify the pathogenesis of these diseases. Some experimental studies have shown that the elimination of senescent cells or their biochemical mediators can improve bone mass, muscle mass and function, osteoarthritis, insulin resistance, and other chronic diseases, pointing to a probable single therapy to treat old age in contrast to the many drugs that older people usually use. The future will show us if this paradigm becomes a reality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prince MJ, Wu F, Guo Y, Gutierrez Robledo LM, O’Donnell M, Sullivan R, et al. The burden of disease in older people and implications for health policy and practice. Lancet. 2015;385(9967):549–62.

    Article  Google Scholar 

  2. Riera-Espinoza G. Epidemiology of osteoporosis in Latin America 2008. Salud Publica Mex. 2009;51(Suppl 1):S52–5.

    Article  Google Scholar 

  3. International Osteoporosis Foundation. One in three women over 50 will experience osteoporotic fractures. https://www.iofbonehealth.org/epidemiology. Accessed from 11 May 2018.

  4. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–63.

    Article  CAS  Google Scholar 

  5. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43:748–59.

    Article  Google Scholar 

  6. Bettis T, Kim BJ, Hamrick MW. Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. 2018;29(8):1713–20.

    Article  CAS  Google Scholar 

  7. Hassan EB, Duque G. Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician. 2017;46:849–53.

    PubMed  Google Scholar 

  8. Wang YJ, Wang Y, Zhan JK, et al. Sarco-osteoporosis: prevalence and association with frailty in Chinese community-dwelling older adults. Int J Endocrinol. 2015;2015:482940.

    PubMed  PubMed Central  Google Scholar 

  9. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, et al. Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc. 2015;16:290–5.

    Article  Google Scholar 

  10. Yoo JI, Kim H, Ha YC, Kwon HB, Koo KH. Osteosarcopenia in patients with hip fracture is related with high mortality. J Korean Med Sci. 2018;33(4):e27.

    Article  Google Scholar 

  11. Hirschfeld HP, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28:2781–90.

    Article  CAS  Google Scholar 

  12. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Bio. 2011;192:547–56.

    Article  CAS  Google Scholar 

  13. Maciel-Barón LA, Morales-Rosales SL, Aquino-Cruz AA, Triana-Martínez F, Galván-Arzate S, Luna-López A, et al. Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr). 2016;38:26.

    Article  Google Scholar 

  14. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31:1920–9.

    Article  CAS  Google Scholar 

  15. Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle. 2014;13:3183–90.

    Article  CAS  Google Scholar 

  16. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing. 2010;39:412–23.

    Article  Google Scholar 

  17. Awasthi H, Mani D, Singh D, Gupta A. The underlying pathophysiology and therapeutic approaches for osteoporosis. Med Res Rev. 2018;38(6):2024–57.

    Article  Google Scholar 

  18. Trouwborst I, Verreijen A, Memelink R, Massanet P, Boirie Y, Weijs P, et al. Exercise and nutrition strategies to counteract sarcopenic obesity. Nutrients. 2018;10(5):E605.

    Article  Google Scholar 

  19. Greising SM, Baltgalvis KA, Lowe DA, Warren GL. Hormone therapy and skeletal muscle strength: a meta-analysis. J Gerontol A Biol Sci Med Sci. 2009;64:1071–81.

    Article  Google Scholar 

  20. Bea JW, Zhao Q, Cauley JA, LaCroix AZ, Bassford T, Lewis CE, et al. Effect of hormone therapy on lean body mass, falls, and fractures: 6-year results from the Women’s Health Initiative hormone trials. Menopause. 2011;18:44–52.

    Article  Google Scholar 

  21. Antoniak AE, Greig CA. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis. BMJ Open. 2017;7(7):e014619.

    Article  Google Scholar 

  22. Guthrie B, Makubate B, Hernandez-Santiago V, Dreischulte T. The rising tide of polypharmacy and drug-drug interactions: population database analysis 1995-2010. BMC Med. 2015;13:74.

    Article  Google Scholar 

  23. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delay aging-associated disorders. Nature. 2011;479:232–6.

    Article  CAS  Google Scholar 

  24. Xu M, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112:301–10.

    Google Scholar 

  25. Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23:1072–9.

    Article  CAS  Google Scholar 

  26. Wu G, Xu R, Zhang P, Xiao T, Fu Y, Zhang Y, et al. Estrogen regulates stemness and senescence of bone marrow stromal cells to prevent osteoporosis via ERβ-SATB2 pathway. J Cell Physiol. 2018;233:4194–204.

    Article  CAS  Google Scholar 

  27. Dolivo D, Hernandez S, Dominko T. Cellular lifespan and senescence: a complex balance between multiple cellular pathways. BioEssays. 2016;38(Suppl 1):S33–44.

    Article  CAS  Google Scholar 

Download references

Conflicts of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this document.

Funding acknowledgement: None of the authors received funding for the creation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Enrique Blümel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blümel, J.E., Arteaga, E., Vallejo, M.S., Chea, R. (2019). The Links Between Osteoporosis and Sarcopenia in Women. In: Pérez-López, F. (eds) Postmenopausal Diseases and Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-13936-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13936-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13935-3

  • Online ISBN: 978-3-030-13936-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics