Skip to main content

Anabolic Agents for the Treatment of Postmenopausal Osteoporosis

  • Chapter
  • First Online:
Postmenopausal Diseases and Disorders

Abstract

Osteoporosis is characterized by quantitative and qualitative changes of bone tissue leading to increased bone fragility with consequent fractures. Pharmacological therapy is aimed at decreasing the risk of fractures, mainly correcting the imbalance between bone resorption and formation at the level of bone remodeling units. Contrary to traditional antiresorptive agents, anabolic drugs increase bone mass to a greater extent. There are currently two available drugs licensed for the treatment of postmenopausal osteoporosis by the US Food and Drug Administration (parathyroid hormone 1-34 and abaloparatide); only PTH 1-34 is marketed in Europe. Another new drug on the horizon is represented by the humanized monoclonal antibody against sclerostin, romosozumab. The availability of such a portfolio of anabolic treatments will allow a more tailored approach to the treatment of patients with postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papapoulos SE. Anabolic bone therapies in 2014: new bone-forming treatments for osteoporosis. Nat Rev Endocrinol. 2015;11:69–70.

    Article  CAS  PubMed  Google Scholar 

  2. Minisola S, Cipriani C, Occhiuto M, Pepe J. New anabolic therapies for osteoporosis. Intern Emerg Med. 2017;12:915–21.

    Article  PubMed  Google Scholar 

  3. Bone health and osteoporosis: a report of the surgeon general, Rockville, MD; 2004.

    Google Scholar 

  4. Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1–2):136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Romagnoli E, Carnevale V, Nofroni I, et al. Quality of life in ambulatory postmenopausal women: the impact of reduced bone mineral density and subclinical fractures. Osteoporos Int. 2004;15:975–80.

    Article  PubMed  Google Scholar 

  7. Kanis JA, Cooper C, Rizzoli R, et al. Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int. 2017;28(7):2023–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salked G, Cameron ID, Cumming RG, et al. Quality of life related to fear of falling and hip fracture in older women: a time trade off study. Br Med J. 2000;320(7231):341–6.

    Article  Google Scholar 

  9. Pfeifer M, Sinaki M, Geusens P, et al. Musculoskeletal rehabilitation in osteoporosis: a review. J Bone Miner Res. 2004;19:1208–14.

    Article  PubMed  Google Scholar 

  10. Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23.

    Article  CAS  PubMed  Google Scholar 

  11. Romagnoli E, Pepe J, Piemonte S, et al. Management of endocrine disease: value and limitations of assessing vitamin D nutritional status and advised levels of vitamin D supplementation. Eur J Endocrinol. 2013;169:59–69.

    Article  Google Scholar 

  12. Cipriani C, Pepe J, Piemonte S, et al. Vitamin D and its relationship with obesity and muscle. Int J Endocrinol. 2014;2014:841248.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Murad MH, Drake MT, Mullan RJ, et al. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1871–80.

    Article  CAS  PubMed  Google Scholar 

  14. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20:177–84.

    Article  CAS  PubMed  Google Scholar 

  15. Minisola S. Romosozumab: from basic to clinical aspects. Expert Opin Biol Ther. 2014;14(9):1225–8.

    Article  CAS  PubMed  Google Scholar 

  16. Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  17. Dempster DW, Zhou H, Recker RR, et al. A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial. J Bone Miner Res. 2016;31:1429–39.

    Article  CAS  PubMed  Google Scholar 

  18. Moreira CA, Dempster DW. Histomorphometric changes following treatment for osteoporosis. J Endocrinol Investig. 2017;40(9):895–7.

    Article  CAS  Google Scholar 

  19. Hansen KE, Wilson HA, Zapalowski C, et al. Uncertainties in the prevention and treatment of glucocorticoid-induced osteoporosis. J Bone Miner Res. 2011;26:1989–96.

    Article  PubMed  Google Scholar 

  20. Mazziotti G, Formenti AM, Adler RA, et al. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine. 2016;54:603–11.

    Article  CAS  PubMed  Google Scholar 

  21. Farahmand P, Marin F, Hawkins F, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24:2971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.

    Article  CAS  PubMed  Google Scholar 

  23. Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.

    Article  CAS  PubMed  Google Scholar 

  24. Geusens P, Marin F, Kendler DL. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J Bone Miner Res. 2018;33(5):783–94.

    Article  CAS  PubMed  Google Scholar 

  25. Papapoulos SE, Makras P. Selection of antiresorptive or anabolic treatments for postmenopausal osteoporosis. Nat Clin Pract Endocrinol Metab. 2008;4(9):514–23.

    Article  CAS  PubMed  Google Scholar 

  26. Canalis E. Novel anabolic treatments for osteoporosis. Eur J Endocrinol. 2018;178(2):R33–44.

    Article  CAS  PubMed  Google Scholar 

  27. Miller PD, Hattersley G, Riis BJ, et al. Effect of Abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.

    Article  CAS  PubMed  Google Scholar 

  28. Johnell O, Kanis JA, Odén A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15:175–9.

    Article  CAS  PubMed  Google Scholar 

  29. Cosman F, Hattersley G, Hu MY, et al. Effects of Abaloparatide-SC on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res. 2017;32:17–23.

    Article  CAS  PubMed  Google Scholar 

  30. Costa AG, Bilezikian JP, Lewiecki EM. Update on romosozumab: a humanized monoclonal antibody to sclerostin. Expert Opin Biol Ther. 2014;14(5):697–707.

    Article  CAS  PubMed  Google Scholar 

  31. Drake MT, Srinivasan B, Mödder UI, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95(11):5056–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Piemonte S, Romagnoli E, Bratengeier C, et al. Serum sclerostin levels decline in post-menopausal women with osteoporosis following treatment with intermittent parathyroid hormone. J Endocrinol Investig. 2012;35:866–8.

    CAS  Google Scholar 

  33. Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33(5):747–83.

    Article  CAS  PubMed  Google Scholar 

  34. Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.

    Article  CAS  PubMed  Google Scholar 

  35. Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–27.

    Article  CAS  PubMed  Google Scholar 

  36. Cipriani C, Romagnoli E, Pepe J, et al. Long-term bioavailability after a single oral or intramuscular administration of 600,000 IU of ergocalciferol or cholecalciferol: implications for treatment and prophylaxis. J Clin Endocrinol Metab. 2013;98(7):2709–15.

    Article  CAS  PubMed  Google Scholar 

  37. Minisola S, Pepe J, Donato P, et al. Replenishment of vitamin D status: theoretical and practical considerations. Hormones. 2018;18(1):3–5.

    Article  PubMed  Google Scholar 

  38. Has AV, LeBoff MS. Osteoanabolic agents for osteoporosis. J Endocr Soc. 2018;2(8):922–32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Minisola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minisola, S. (2019). Anabolic Agents for the Treatment of Postmenopausal Osteoporosis. In: Pérez-López, F. (eds) Postmenopausal Diseases and Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-13936-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13936-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13935-3

  • Online ISBN: 978-3-030-13936-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics