Anabolic Agents for the Treatment of Postmenopausal Osteoporosis

  • Salvatore MinisolaEmail author


Osteoporosis is characterized by quantitative and qualitative changes of bone tissue leading to increased bone fragility with consequent fractures. Pharmacological therapy is aimed at decreasing the risk of fractures, mainly correcting the imbalance between bone resorption and formation at the level of bone remodeling units. Contrary to traditional antiresorptive agents, anabolic drugs increase bone mass to a greater extent. There are currently two available drugs licensed for the treatment of postmenopausal osteoporosis by the US Food and Drug Administration (parathyroid hormone 1-34 and abaloparatide); only PTH 1-34 is marketed in Europe. Another new drug on the horizon is represented by the humanized monoclonal antibody against sclerostin, romosozumab. The availability of such a portfolio of anabolic treatments will allow a more tailored approach to the treatment of patients with postmenopausal osteoporosis.


Osteoporosis Fractures Teriparatide Abaloparatide Romosozumab 


  1. 1.
    Papapoulos SE. Anabolic bone therapies in 2014: new bone-forming treatments for osteoporosis. Nat Rev Endocrinol. 2015;11:69–70.PubMedCrossRefGoogle Scholar
  2. 2.
    Minisola S, Cipriani C, Occhiuto M, Pepe J. New anabolic therapies for osteoporosis. Intern Emerg Med. 2017;12:915–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Bone health and osteoporosis: a report of the surgeon general, Rockville, MD; 2004.Google Scholar
  4. 4.
    Hernlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1–2):136.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Romagnoli E, Carnevale V, Nofroni I, et al. Quality of life in ambulatory postmenopausal women: the impact of reduced bone mineral density and subclinical fractures. Osteoporos Int. 2004;15:975–80.PubMedCrossRefGoogle Scholar
  7. 7.
    Kanis JA, Cooper C, Rizzoli R, et al. Identification and management of patients at increased risk of osteoporotic fracture: outcomes of an ESCEO expert consensus meeting. Osteoporos Int. 2017;28(7):2023–34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Salked G, Cameron ID, Cumming RG, et al. Quality of life related to fear of falling and hip fracture in older women: a time trade off study. Br Med J. 2000;320(7231):341–6.CrossRefGoogle Scholar
  9. 9.
    Pfeifer M, Sinaki M, Geusens P, et al. Musculoskeletal rehabilitation in osteoporosis: a review. J Bone Miner Res. 2004;19:1208–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Boonen S, Lips P, Bouillon R, et al. Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23.PubMedCrossRefGoogle Scholar
  11. 11.
    Romagnoli E, Pepe J, Piemonte S, et al. Management of endocrine disease: value and limitations of assessing vitamin D nutritional status and advised levels of vitamin D supplementation. Eur J Endocrinol. 2013;169:59–69.CrossRefGoogle Scholar
  12. 12.
    Cipriani C, Pepe J, Piemonte S, et al. Vitamin D and its relationship with obesity and muscle. Int J Endocrinol. 2014;2014:841248.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Murad MH, Drake MT, Mullan RJ, et al. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab. 2012;97(6):1871–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20:177–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Minisola S. Romosozumab: from basic to clinical aspects. Expert Opin Biol Ther. 2014;14(9):1225–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Neer RM, Arnaud CD, Zanchetta JR, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Dempster DW, Zhou H, Recker RR, et al. A longitudinal study of skeletal histomorphometry at 6 and 24 months across four bone envelopes in postmenopausal women with osteoporosis receiving teriparatide or zoledronic acid in the SHOTZ trial. J Bone Miner Res. 2016;31:1429–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Moreira CA, Dempster DW. Histomorphometric changes following treatment for osteoporosis. J Endocrinol Investig. 2017;40(9):895–7.CrossRefGoogle Scholar
  19. 19.
    Hansen KE, Wilson HA, Zapalowski C, et al. Uncertainties in the prevention and treatment of glucocorticoid-induced osteoporosis. J Bone Miner Res. 2011;26:1989–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Mazziotti G, Formenti AM, Adler RA, et al. Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine. 2016;54:603–11.PubMedCrossRefGoogle Scholar
  21. 21.
    Farahmand P, Marin F, Hawkins F, et al. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int. 2013;24:2971–81.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Saag KG, Shane E, Boonen S, et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357:2028–39.PubMedCrossRefGoogle Scholar
  23. 23.
    Kendler DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018;391(10117):230–40.PubMedCrossRefGoogle Scholar
  24. 24.
    Geusens P, Marin F, Kendler DL. Effects of teriparatide compared with risedronate on the risk of fractures in subgroups of postmenopausal women with severe osteoporosis: the VERO trial. J Bone Miner Res. 2018;33(5):783–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Papapoulos SE, Makras P. Selection of antiresorptive or anabolic treatments for postmenopausal osteoporosis. Nat Clin Pract Endocrinol Metab. 2008;4(9):514–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Canalis E. Novel anabolic treatments for osteoporosis. Eur J Endocrinol. 2018;178(2):R33–44.PubMedCrossRefGoogle Scholar
  27. 27.
    Miller PD, Hattersley G, Riis BJ, et al. Effect of Abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Johnell O, Kanis JA, Odén A, et al. Fracture risk following an osteoporotic fracture. Osteoporos Int. 2004;15:175–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Cosman F, Hattersley G, Hu MY, et al. Effects of Abaloparatide-SC on fractures and bone mineral density in subgroups of postmenopausal women with osteoporosis and varying baseline risk factors. J Bone Miner Res. 2017;32:17–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Costa AG, Bilezikian JP, Lewiecki EM. Update on romosozumab: a humanized monoclonal antibody to sclerostin. Expert Opin Biol Ther. 2014;14(5):697–707.PubMedCrossRefGoogle Scholar
  31. 31.
    Drake MT, Srinivasan B, Mödder UI, et al. Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95(11):5056–62.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Piemonte S, Romagnoli E, Bratengeier C, et al. Serum sclerostin levels decline in post-menopausal women with osteoporosis following treatment with intermittent parathyroid hormone. J Endocrinol Investig. 2012;35:866–8.Google Scholar
  33. 33.
    Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33(5):747–83.PubMedCrossRefGoogle Scholar
  34. 34.
    Cosman F, Crittenden DB, Adachi JD, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.PubMedCrossRefGoogle Scholar
  35. 35.
    Saag KG, Petersen J, Brandi ML, et al. Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med. 2017;377(15):1417–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Cipriani C, Romagnoli E, Pepe J, et al. Long-term bioavailability after a single oral or intramuscular administration of 600,000 IU of ergocalciferol or cholecalciferol: implications for treatment and prophylaxis. J Clin Endocrinol Metab. 2013;98(7):2709–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Minisola S, Pepe J, Donato P, et al. Replenishment of vitamin D status: theoretical and practical considerations. Hormones. 2018;18(1):3–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Has AV, LeBoff MS. Osteoanabolic agents for osteoporosis. J Endocr Soc. 2018;2(8):922–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Internal Medicine and Medical Disciplines“Sapienza” Rome UniversityRomeItaly

Personalised recommendations