Advertisement

Management of Osteoporosis in Postmenopausal Women

  • J. J. Hidalgo-Mora
  • Antonio J. Cano-Marquina
  • A. Szeliga
  • Miguel Ángel García-Pérez
  • A. CanoEmail author
Chapter

Abstract

Osteoporosis is a noncommunicable disease with increasing incidence at a global level. The burden of the disease particularly concerns women. A drastic and rapid decline in the circulating levels of estrogens, a key regulator of bone metabolism, is responsible for the increase in bone loss after menopause. Cells with a role in bone metabolism, osteoblasts, osteoclasts and osteocytes, have estrogen receptors. The fall in estrogens increases the differentiation of osteoclasts from progenitors in the bone marrow. A significant expansion in the resorption process follows.

Diagnosis is based on anamnesis, which will give information of clinical risk factors. This will allow for the use of absolute risk prediction scales, like FRAX, developed by the World Health Organization. Radiological imaging, particularly dual X-ray absorptiometry (DXA), is also crucial. There are also biochemical markers, although their use in clinical practice is not general.

Management should be based on prevention. Healthy lifestyle (restraint from smoking and excessive alcohol, adequate intake of protein and calcium, and physical activity) and hormone therapy, in women with menopausal symptoms, are crucial. Pharmacological drugs are mainly based on anti-resorptives, where selective estrogen receptor modulators (SERMs) may add reduction of breast cancer risk. Bisphosphonates and denosumab should be considered in appropriate cases.

Keywords

Osteoporosis Postmenopause Clinical risk factors Densitometry Biochemical markers Prevention Lifestyle Hormone therapy Anti-resorptive drugs 

References

  1. 1.
    International Osteoporosis Foundation. What is osteoporosis-epidemiology. https://www.iofbonehealth.org/epidemiology. Accessed 8 Apr 2019.
  2. 2.
    Kanis JA, Oden A, Johnell O, De Laet C, Jonsson B, Oglesby AK. The components of excess mortality after hip fracture. Bone. 2003;32:468–73.CrossRefGoogle Scholar
  3. 3.
    Kanis JA, Johnell O, Oden A, et al. Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int. 2000;11:669–74.CrossRefGoogle Scholar
  4. 4.
    Melton LJ, Atkinson EJ, O’Connor MK, O’Fallon WM, Riggs BL. Bone density and fracture risk in men. J Bone Miner Res. 1998;13:1915–23.CrossRefGoogle Scholar
  5. 5.
    Melton LJ III, Chrischilles EA, Cooper C, Lane AW, Riggs BL. Perspective. How many women have osteoporosis? J Bone Miner Res. 1992;7:1005–10.CrossRefGoogle Scholar
  6. 6.
    Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.CrossRefGoogle Scholar
  7. 7.
    Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int. 2012;23:2067–79.CrossRefGoogle Scholar
  8. 8.
    Nakashima T, Hayashi M, Fukunaga T, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17:1231–4.CrossRefGoogle Scholar
  9. 9.
    Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17:1235–41.CrossRefGoogle Scholar
  10. 10.
    Bandeira F, Costa AG, Soares Filho MA, Pimentel L, Lima L, Bilezikian JP. Bone markers and osteoporosis therapy. Arq Bras Endocrinol Metabol. 2014;58:504–13.CrossRefGoogle Scholar
  11. 11.
    Niedźwiedzki T, Filipowska J. Bone remodeling in the context of cellular and systemic regulation: the role of osteocytes and the nervous system. J Mol Endocrinol. 2015;55:R23–36.CrossRefGoogle Scholar
  12. 12.
    Wang HH, Hsu YH, Chang MS. IL-20 bone diseases involvement and therapeutic target potential. J Biomed Sci. 2018;25:38.CrossRefGoogle Scholar
  13. 13.
    Arts J, Kuiper GG, Janssen JM, et al. Differential expression of estrogen receptors alpha and beta mRNA during differentiation of human osteoblast SV-HFO cells. Endocrinology. 1997;138:5067–70.CrossRefGoogle Scholar
  14. 14.
    Braidman IP, Davenport LK, Carter DH, Selby PL, Mawer EB, Freemont AJ. Preliminary in situ identification of estrogen target cells in bone. J Bone Miner Res. 1995;10:74–80.CrossRefGoogle Scholar
  15. 15.
    Vidal O, Kindblom LG, Ohlsson C. Expression and localization of estrogen receptor-beta in murine and human bone. J Bone Miner Res. 1999;14:923–9.CrossRefGoogle Scholar
  16. 16.
    Bilezikian JP, Morishima A, Bell J, Grumbach MM. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med. 1998;339:599–603.CrossRefGoogle Scholar
  17. 17.
    Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest. 2000;106:1553–60.CrossRefGoogle Scholar
  18. 18.
    Lindsay R, Hart DM, Aitken JM, MacDonald EB, Anderson JB, Clarke AC. Long-term prevention of postmenopausal osteoporosis by oestrogen. Evidence for an increased bone mass after delayed onset of oestrogen treatment. Lancet. 1976;1:1038–41.CrossRefGoogle Scholar
  19. 19.
    Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab. 2012;23:576–81.CrossRefGoogle Scholar
  20. 20.
    Sowers MR, Finkelstein JS, Ettinger B, et al. The association of endogenous hormone concentrations and bone mineral density measures in pre- and perimenopausal women of four ethnic groups: SWAN. Osteoporos Int. 2003;14:44–52.CrossRefGoogle Scholar
  21. 21.
    Garnero P, Sornay-Rendu E, Chapuy M-C, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res. 1996;11:337–49.CrossRefGoogle Scholar
  22. 22.
    Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metabol. 1997;82:3128–35.Google Scholar
  23. 23.
    Jilka RL, Noble B, Weinstein RS. Osteocyte apoptosis. Bone. 2013;54:264–71.CrossRefGoogle Scholar
  24. 24.
    Yang Y, Zheng X, Li B, Jiang S, Jiang L. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss. Biochem Biophys Res Commun. 2014;451:86–92.CrossRefGoogle Scholar
  25. 25.
    Kamimura M, Nakamura Y, Sugino N, et al. Associations of self-reported height loss and kyphosis with vertebral fractures in Japanese women 60 years and older: a cross-sectional survey. Sci Rep. 2016;6:29199.CrossRefGoogle Scholar
  26. 26.
    Azagra R, Roca G, Encabo G, et al. FRAX® tool, the WHO algorithm to predict osteoporotic fractures: the first analysis of its discriminative and predictive ability in the Spanish FRIDEX cohort. BMC Musculoskelet Disord. 2012;13:204.CrossRefGoogle Scholar
  27. 27.
    González-Macías J, Marin F, Vila J, Díez-Pérez A. Probability of fractures predicted by FRAX® and observed incidence in the Spanish ECOSAP study cohort. Bone. 2012;50:373–7.CrossRefGoogle Scholar
  28. 28.
    Compston J. FRAX—where are we now? Maturitas. 2015;82:284–7.CrossRefGoogle Scholar
  29. 29.
    US Preventive Services Task Force, Curry SJ, Krist AH, Owens DK, et al. Screening for osteoporosis to prevent fractures: US Preventive Services Task Force recommendation statement. JAMA. 2018;319:2521–31.CrossRefGoogle Scholar
  30. 30.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.CrossRefGoogle Scholar
  31. 31.
    Krieg MA, Barkmann R, Gonnelli S, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD official positions. J Clin Densitom. 2008;11:163–87.CrossRefGoogle Scholar
  32. 32.
    Link TM. Radiology of osteoporosis. Can Assoc Radiol J. 2016;67:28–40.CrossRefGoogle Scholar
  33. 33.
    Jiang N, Xia W. Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int. 2018;29:1721–36.CrossRefGoogle Scholar
  34. 34.
    Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density Program. TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metabol. 2013;98:602–9.CrossRefGoogle Scholar
  35. 35.
    Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N. Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int. 2013;24:2837–46.CrossRefGoogle Scholar
  36. 36.
    Silva BC, Leslie WD. Trabecular bone score: a new DXA-derived measurement for fracture risk assessment. Endocrinol Metab Clin N Am. 2017;46:153–80.CrossRefGoogle Scholar
  37. 37.
    Benson B, Shulman J. Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine Tob Res. 2005;7:719–24.CrossRefGoogle Scholar
  38. 38.
    Jackson R, Mysiw W. Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative. Semin Reprod Med. 2014;32:454–62.CrossRefGoogle Scholar
  39. 39.
    Chevalley T, Bonjour JP, Audet MC, et al. Prepubertal impact of protein intake and physical activity on weight-bearing peak bone mass and strength in males. J Clin Endocrinol Metab. 2017;102:157–66.PubMedGoogle Scholar
  40. 40.
    Beasley JM, LaCroix AZ, Larson JC, et al. Biomarker-calibrated protein intake and bone health in the Women’s Health Initiative clinical trials and observational study. Am J Clin Nutr. 2014;99:934–40.CrossRefGoogle Scholar
  41. 41.
    Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA. Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr. 2009;90:1674–92.CrossRefGoogle Scholar
  42. 42.
    Radavelli-Bagatini S, Zhu K, Lewis JR, Prince RL. Dairy food intake, peripheral bone structure, and muscle mass in elderly ambulatory women. J Bone Miner Res. 2014;29:1691–700.CrossRefGoogle Scholar
  43. 43.
    Cano A, et al. Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide. Maturitas. 2018;107:7–12.CrossRefGoogle Scholar
  44. 44.
    National Osteoporosis Society. Healthy eating for strong bones. https://theros.org.uk/media/2077/healthy-living-for-strong-bones-oct-2016.pdf. Accesed 7 Apr 2019.
  45. 45.
    Hunt CD, Johnson LAK. Calcium requirements: new estimations for men and women by cross-sectional statistical analyses of calcium balance data from metabolic studies. Am J Clin Nutr. 2007;86:1054–63.CrossRefGoogle Scholar
  46. 46.
    Wallace RB, Wactawski-Wende J, O’Sullivan MJ, Larson JC, Cochrane B, Gass M, Masaki K. Urinary tract stone occurrence in the Women’s Health Initiative (WHI) randomized clinical trial of calcium and vitamin D supplements. Am J Clin Nutr. 2011;94:270–7.CrossRefGoogle Scholar
  47. 47.
    Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691.CrossRefGoogle Scholar
  48. 48.
    Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ (Clin Res Ed). 2011;342:d2040.CrossRefGoogle Scholar
  49. 49.
    Warensjö E, Byberg L, Melhus H, et al. Dietary calcium intake and risk of fracture and osteoporosis: prospective longitudinal cohort study. BMJ. 2011;342:d1473.CrossRefGoogle Scholar
  50. 50.
    Crandall CJ, Aragaki AK, LeBoff MS, et al. Calcium plus vitamin D supplementation and height loss: findings from the Women’s Health Initiative Calcium and Vitamin D clinical trial. Menopause. 2016;23:1277–86.CrossRefGoogle Scholar
  51. 51.
    Chung M, Lee J, Terasawa T, Lau J, Trikalinos TA. Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. preventive services task force. Ann Intern Med. 2011;155:827.CrossRefGoogle Scholar
  52. 52.
    Gillespie LD, Robertson MC, Gillespie WJ, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;(9):CD007146.Google Scholar
  53. 53.
    Smith SM, Abrams SA, Davis-Street JE, et al. Fifty years of human space travel: implications for bone and calcium research. Annu Rev Nutr. 2014;34:377–400.CrossRefGoogle Scholar
  54. 54.
    Ho-Pham LT, Nguyen UDT, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metabol. 2014;99:30–8.CrossRefGoogle Scholar
  55. 55.
    Meyer U, Ernst D, Zahner L, et al. 3-Year follow-up results of bone mineral content and density after a school-based physical activity randomized intervention trial. Bone. 2013;55:16–22.CrossRefGoogle Scholar
  56. 56.
    Babatunde O, Forsyth J. Effects of lifestyle exercise on premenopausal bone health: a randomised controlled trial. J Bone Miner Metab. 2014;32:563–72.CrossRefGoogle Scholar
  57. 57.
    Evans RK, Negus CH, Centi AJ, Spiering BA, Kraemer WJ, Nindl BC. Peripheral QCT sector analysis reveals early exercise-induced increases in tibial bone mineral density. J Musculoskelet Neuronal Interact. 2012;12:155–64.PubMedGoogle Scholar
  58. 58.
    Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2012;13:177.CrossRefGoogle Scholar
  59. 59.
    Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int. 2015;26:1605–18.CrossRefGoogle Scholar
  60. 60.
    Qu X, Zhang X, Zhai Z, et al. Association between physical activity and risk of fracture. J Bone Miner Res. 2014;29:202–11.CrossRefGoogle Scholar
  61. 61.
    Silva RB, Eslick GD, Duque G. Exercise for falls and fracture prevention in long term care facilities: a systematic review and meta-analysis. J Am Med Dir Assoc. 2013;14:685–9.e2.CrossRefGoogle Scholar
  62. 62.
    Cauley JA, Robbins J, Chen Z, et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA. 2003;290:1729–38.CrossRefGoogle Scholar
  63. 63.
    Gallagher JC, Rapuri PB, Haynatzki G, Detter JR. Effect of discontinuation of estrogen, calcitriol, and the combination of both on bone density and bone markers. J Clin Endocrinol Metabol. 2002;87:4914–23.CrossRefGoogle Scholar
  64. 64.
    European Medicines Agency. Guideline on clinical investigation of medicinal products for hormone replacement therapy of oestrogen deficiency symptoms in postmenopausal women; 2005. https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-investigation-medicinal-products-hormone-replacement-therapy-oestrogen-deficiency_en.pdf. Accessed 8 Apr 2019.
  65. 65.
    Cano A, Hermenegildo C. Modulation of the oestrogen receptor: a process with distinct susceptible steps. Hum Reprod Update. 2000;6:207–11.CrossRefGoogle Scholar
  66. 66.
    Ettinger B, Black DM, Mitlak BH, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple Outcomes of Raloxifene Evaluation (MORE) Investigators. JAMA. 1999;282:637–45.CrossRefGoogle Scholar
  67. 67.
    Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23:1923–34.CrossRefGoogle Scholar
  68. 68.
    Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33:522–32.CrossRefGoogle Scholar
  69. 69.
    Vogel VG, Costantino JP, Wickerham DL, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;295:2727–41.CrossRefGoogle Scholar
  70. 70.
    Borgström F, Ström O, Kleman M, et al. Cost-effectiveness of bazedoxifene incorporating the FRAX® algorithm in a European perspective. Osteoporos Int. 2011;22:955–65.CrossRefGoogle Scholar
  71. 71.
    Kim K, Svedbom A, Luo X, Sutradhar S, Kanis JA. Comparative cost-effectiveness of bazedoxifene and raloxifene in the treatment of postmenopausal osteoporosis in Europe, using the FRAX algorithm. Osteoporos Int. 2014;25:325–37.CrossRefGoogle Scholar
  72. 72.
    Cano A, Mendoza N, Sánchez-Borrego R, for the Osteoporosis Guideline Writing Group from the Spanish Menopause Society. Sequential use of antiresorptives in younger women. Osteoporos Int. 2014;25:1191–2.CrossRefGoogle Scholar
  73. 73.
    Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49:34–41.CrossRefGoogle Scholar
  74. 74.
    Crandall CJ, Newberry SJ, Diamant A, et al. Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med. 2014;161:711–23.CrossRefGoogle Scholar
  75. 75.
    Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30:3–23.CrossRefGoogle Scholar
  76. 76.
    European Medicines Agency. Questions and answers on the review of bisphosphonates and atypical stress fractures; 2011. https://www.ema.europa.eu/en/documents/referral/questions-answers-review-bisphosphonates-atypical-stress-fractures_en.pdf. Accessed 8 Apr 2019.
  77. 77.
    Maraka S, Kennel KA. Bisphosphonates for the prevention and treatment of osteoporosis. BMJ (Clin Res Ed.). 2015;351:h3783.Google Scholar
  78. 78.
    Imaz I, Zegarra P, González-Enríquez J, Rubio B, Alcazar R, Amate JM. Poor bisphosphonate adherence for treatment of osteoporosis increases fracture risk: systematic review and meta-analysis. Osteoporos Int. 2010;21:1943–51.CrossRefGoogle Scholar
  79. 79.
    Cummings SR, San Martin J, McClung MR, et al; FREEDOM Trial. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.Google Scholar
  80. 80.
    Brown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res. 2009;24:153–61.CrossRefGoogle Scholar
  81. 81.
    Kendler DL, Roux C, Benhamou CL, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res. 2010;25:72–81.CrossRefGoogle Scholar
  82. 82.
    Bone HG, Wagman RB, Brandi ML, et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5:513–23.CrossRefGoogle Scholar
  83. 83.
    Selga J, Nuñez JH, Minguell J, Lalanza M, Garrido M. Simultaneous bilateral atypical femoral fracture in a patient receiving denosumab: case report and literature review. Osteoporos Int. 2016;27:827–32.CrossRefGoogle Scholar
  84. 84.
    European Medicines Agency. Prolia. https://www.ema.europa.eu/en/medicines/human/EPAR/prolia. Accessed 8 Apr 2019.
  85. 85.
    Kendler DL, Macarios D, Lillestol MJ, et al. Influence of patient perceptions and preferences for osteoporosis medication on adherence behavior in the Denosumab Adherence Preference Satisfaction study. Menopause. 2014;21:25–32.CrossRefGoogle Scholar
  86. 86.
    Reyes C, Tebe C, Martinez-Laguna D, et al. One and two-year persistence with different anti-osteoporosis medications: a retrospective cohort study. Osteoporos Int. 2017;28:2997–3004.CrossRefGoogle Scholar
  87. 87.
    Cano A, Silvan JM, Estévez A, et al. Spanish Menopause Society position statement: use of denosumab in postmenopausal women. Maturitas. 2014;79:117–21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. J. Hidalgo-Mora
    • 1
  • Antonio J. Cano-Marquina
    • 2
  • A. Szeliga
    • 3
  • Miguel Ángel García-Pérez
    • 4
    • 5
  • A. Cano
    • 1
    • 6
    Email author
  1. 1.Service of Obstetrics and GynecologyHospital Clínico Universitario-INCLIVAValenciaSpain
  2. 2.Service of RadiologyHospital de SaguntoValenciaSpain
  3. 3.Department of Gynecological EndocrinologyPoznan University of Medical SciencesPoznanPoland
  4. 4.Department of GeneticsUniversity of ValenciaValenciaSpain
  5. 5.Institute of Health Research INCLIVAValenciaSpain
  6. 6.Department of Pediatrics, Obstetrics and GynecologyUniversity of ValenciaValenciaSpain

Personalised recommendations