Skip to main content

Feasibility of Microalgal Technologies in Pathogen Removal from Wastewater

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Various anthropogenic activities continuously affect the quality of water adversely leading to its transformation into wastewater. The wastewater comprises a wide range of heavy metals, xenobiotic substances, pathogens (bacteria, viruses, protozoans, fungi, and helminths), and contaminants like organic and inorganic materials from industrial, domestic, and agricultural sources. Thus, the infelicitous disposal of wastewater into the environment, apart from producing various pollution problems (eutrophication or depletion of oxygen in water bodies), results in public health issues including waterborne diseases. Therefore, treatment of wastewater is imperative. Microalgal cultures render an elegant way out for wastewater treatment as they offer a tertiary biotreatment coupled with the production of potentially beneficial biomass that can be utilized for various purposes like biofertilizers and biofuel production. Microalgae play a pivotal role, directly or indirectly, in the removal of fecal bacteria from domestic wastewater. Some indirect algae governed modes of pathogen removal include starvation, sedimentation, and photooxidation. Algae-based processes constitute viable and cost-effective biological processes that are capable to eliminate pathogens at a reduced energy cost. This chapter presents a comprehensive overview on the feasibility of application of microalgae in pathogen removal from wastewater. It is focused on mechanisms involved in pathogen removal from wastewater, factors affecting pathogen elimination, and algal technologies feasible for pathogen removal. Lastly, it highlights the utilization of algae grown from the wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    CAS  Google Scholar 

  • Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, FL, pp 331–338

    Google Scholar 

  • Abeliovich A, Dikbuck S (1977) Factors affecting infection of Scenedesmus obliquus by a Chytridium sp. in sewage oxidation ponds. Appl Environ Microbiol 34:832–836

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    CAS  Google Scholar 

  • Ahmad F, Iftikhar A, Ali AS, Shabbir SA, Wahid A, Mohy-u-Din N, Rauf A (2014) Removal of coliform bacteria from municipal wastewater by Algae. Proc Pakistan Acad Sci 51(2):129–138

    CAS  Google Scholar 

  • Akpor OB, Ogundeji MD, Olaolu TD, Aderiye B (2014) Microbial roles and dynamics in wastewater treatment systems: an overview. Int J Pure Appl Biosci 2(1):156–168

    Google Scholar 

  • Álvarez-Góngora CC, Herrera-Silveira J (2006) Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar Pollut Bull 52:48–60

    Google Scholar 

  • Amin MM, Hashemi H, Bovini AM, Hung YT (2013) A review on wastewater disinfection. International. Int J Environ Health Eng 2:1–9

    CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Google Scholar 

  • Amoatey P, Bani R (2011) Wastewater management. In: García Einschlag FS (ed) Waste water - evaluation and management. InTech, London, SE19SG-United Kingdom, pp 379–398

    Google Scholar 

  • An JY, Sim SJ, Lee JS et al (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185

    CAS  Google Scholar 

  • Ansa EDO, Lubberding HJ, Ampofo JA, Gijzen HJ (2011) The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol Eng 37:317–324

    Google Scholar 

  • Ansa EDO, Lubberding HJ, Gijzen HJ (2012) The effect of algal biomass on the removal of faecal coliform from domestic wastewater. Appl Water Sci 2:87–94

    CAS  Google Scholar 

  • Ansa EDO, Awuah E, Andoh A, Banu R, Dorgbetor WHK, Lubberding HJ, Gijzen HJ (2015) A review of the mechanisms of faecal coliform removal from algal and duckweed waste stabilization pond systems. Am J Environ Sci 11(1):28–34

    CAS  Google Scholar 

  • Anusha V, Sham Sundar KM (2015) Application of Vermifiltration in domestic wastewater treatment. Int J Innov Res Sci Eng Technol 4(8):7301–7304

    Google Scholar 

  • Arvanitoyannis IA, Ladas D (2008) Meat waste management: treatment methods and potential uses of treated waste. In: Taylor SL (ed) Waste management for food industries. Academic Press, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA, pp 765–799

    Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28:64–70

    Google Scholar 

  • Awuah E (2006) Pathogen removal mechanisms in Macrophyte and algal waste stabilization ponds: PhD: UNESCO-IHE Institute. CRC Press, Delft, p 160

    Google Scholar 

  • Bagchi D, Kelley RT (1991) In: Hatcher KJ (ed) Selecting a dechlorinating chemical for a wastewater treatment plant in Georgia, Proceedings of the 1991 Georgia Water Resources Conference, Athens

    Google Scholar 

  • Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, Gouveia L (2014) Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117:537–543

    CAS  Google Scholar 

  • Batista AP, Ambrosano L, Graca S, Sousa C, Marques PA, Ribeiro B, Botrel EP, Castro Neto P, Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production—An integrated microalgae-based approach. Bioresour Technol 184:230–235

    CAS  Google Scholar 

  • Becher G (1999) Drinking water chlorination and health. Acta Hydrochim Hydrobiol 27:100–102

    CAS  Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, London, pp 222–256

    Google Scholar 

  • Belotti G, De Caprariis B, De Filippis P, Scarsella M, Verdone N (2014) Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenergy 61:187–195

    CAS  Google Scholar 

  • Bhargava A (2016) Physico-chemical waste water treatment technologies: an overview. Int J Sci Res Edu 4:5308–5319

    Google Scholar 

  • Bhatnagar A, Bhatnagar M, Chinnasamy S, Das K (2010) Chlorella minutissima – a promising fuel alga for cultivation in municipal wastewaters. Appl Biochem Biotechnol 161:523–536

    CAS  Google Scholar 

  • Borges FC, Xie Q, Min M, Muniz LAR, Farenzena M, Trierweiler JO, Chen P, Ruan R (2014) Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresour Technol 166:518–526

    CAS  Google Scholar 

  • Borkar RP, Gulhane ML, Kotangale AJ (2013) Moving bed biofilm reactor – a new perspective in wastewater treatment. IOSR J Environ Sci Toxicol Food Technol 6(6):15–21

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    CAS  Google Scholar 

  • Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae-novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    CAS  Google Scholar 

  • Buitrón G, Carrillo-Reyes J, Morales M, Faraloni C, Torzillo G (2017) Biohydrogen production from microalgae. In: Fernandez CG, Mữnoz R (eds) Microalgae-based biofuels and bioproducts from feedstock cultivation to end-products. Woodhead Publishing House, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States.pp. 209–234

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    CAS  Google Scholar 

  • Cai J, Chen M, Wang G, Pan G, Yu P (2015) Fermentative hydrogen and polyhydroxybutyrate production from pretreated cyanobacterial blooms. Algal Res 12:295–299

    Google Scholar 

  • Cao H, Zhang Z, Wu X, Miao X (2013) Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Biomed Res Int 2013:930686

    Google Scholar 

  • Characklis GW, Dilts MJ, Simmons OD, Likirdopulos CA, Krometis LH et al (2005) Microbial partitioning to settleable particles in stormwater. Water Res 39:1773–1782

    CAS  Google Scholar 

  • Cheng J, Xia A, Liu Y, Lin R, Zhou J, Cen K (2012) Combination of dark- and photo-fermentation to improve hydrogen production from Arthrospira platensis wet biomass with ammonium removal by zeolite. Int J Hydrog Energy 37:13330–13337

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    CAS  Google Scholar 

  • Contreras-Flores C, Pena-Castro JM, Flores-Cotera LB, Cañizares- Villanueva RO (2003) Advances in conceptual design of photobioreactors for microalgal culture. Interciencia 28:450–456

    Google Scholar 

  • Corbitt RA (1998) Standard handbook of environmental engineering, vol 6, 2nd edn. McGraw-Hill, New York, pp 202–203

    Google Scholar 

  • Cournac L, Guedeney G, Peltier G, Vignais PM (2004) Sustained photoevolution of molecular hydrogen in a mutant of Synechocystis sp. strain PCC 6803 deficient in the type I NADPH-dehydrogenase complex. J Bacteriol 186:1737–1746

    CAS  Google Scholar 

  • Curtis TP, Mara DD, Silva SA (1992) The effect of sunlight on faecal coliforms in ponds: implications for research and design. Water Sci Technol 26(7/8):1729–1738

    CAS  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    CAS  Google Scholar 

  • de la Noue J, de Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv 6:725–770

    Google Scholar 

  • de la Noüe J, Laliberete G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    CAS  Google Scholar 

  • Delenfort E, Thulin P (1997) The use of Kaldnes suspended carrier process in treatment of wastewaters from the forest industry. Water Sci Technol 35(2–3):123–130

    Google Scholar 

  • Demirbaş A (2006) Hydrogen from mosses and algae via pyrolysis and steam gasification. Energ Source Part A 28:933–940

    Google Scholar 

  • Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317

    Google Scholar 

  • Economic and Social Commission for Western Asia (ESCWA) (2003) Waste-water treatment technologies: a general review. United Nation Publication, New York

    Google Scholar 

  • Edzwald JK (1995) Principles and applications of dissolved air flotation. Water Sci Technol 31:1–23

    CAS  Google Scholar 

  • Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA et al (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348

    CAS  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    CAS  Google Scholar 

  • EPA US (2000) Wastewater technology fact sheet: Trickling filter. EPA 832-F-00-014, Office of Water, Environmental Protection Agency U S Washington, DC. Available online at https://www3.epa.gov/npdes/pubs/trickling_filter.pdf

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    CAS  Google Scholar 

  • Food and Agricultural Organisation (2006) Wastewater Treatment. http://www.fao.org/docrep/t0551e/t0551e06.htm#TopOfPage

  • Ghoreishi SM, Haghighi R (2003) Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. J Chem Eng 95:163–169

    CAS  Google Scholar 

  • Gökçe D (2016) Algae as an Indicator of water quality. In: Dhanasekaran D (ed) Algae-organisms for imminent biotechnology. InTech. https://doi.org/10.5772/62916

  • Göksan T, Dumaz Y, Gokpinar S (2003) Effect of light paths lengths and initial culture density on the cultivation of Chaetoceros muelleri (Lemmermann, 1898). Aquaculture 217:431–436

    Google Scholar 

  • Gomez MA, Gonzalez-Lopez J, Hontoria-Garcia E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80(1):69–80

    CAS  Google Scholar 

  • Gopal K, Tripathy SS, Bersillon JL, Dubey SP (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140:1–6

    CAS  Google Scholar 

  • Grandclement C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P (2017) From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res 111:297–317

    CAS  Google Scholar 

  • Gray NF (1989) Biology of wastewater treatment. Oxford Univ. Press, Oxford

    Google Scholar 

  • Gray NF (2005) Water technology: an introduction for environmental scientists and engineers, 2nd edn. Elsevier Science & Technology Books, ISBN 0750666331, Amsterdam

    Google Scholar 

  • Grierson S, Strezov V, Ellem G, Mcgregor R, Herbertson J (2009) Thermal characterisation of microalgae under slow pyrolysis conditions. J Anal Appl Pyrolysis 85:118–123

    CAS  Google Scholar 

  • Grierson S, Strezov V, Shah P (2011) Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour Technol 102:8232–8240

    CAS  Google Scholar 

  • Grobbelaar JU (2000) Physiological and technological considerations for optimising mass algal cultures. J Appl Phycol 12:201–206

    Google Scholar 

  • Gschlößl T, Steinmann C, Schleypen P, Melzer A (1998) Constructed wetlands for effluent polishing of lagoons. Water Res 32:2639–2645

    Google Scholar 

  • Guo S, Zhao X, Tang Y et al (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163:61–68

    CAS  Google Scholar 

  • Hamoda MF, Al-Ghusain I, Al-Mutairi NZ (2002) Tertiary filtration of wastewater for effluent reuse in irrigation. IWA Regional Symposium on Water Recycling in Mediterranean Region, Iraklio, Greece, September 26–29, 2002. Symposium Preprint Book 2, National Foundation for Agricultural Research. Eds. Angelakis A N, Tsagarakis K P, Paranychianakis N V, Asano T, pp. 225–33

    Google Scholar 

  • Han L, Pei H, Hu W, Jiang L, Ma G, Zhang S, Han F (2015) Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresour Technol 175:262–268

    CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309

    CAS  Google Scholar 

  • Henderson R, Parsons SA, Jefferson B (2008) The impact of algal properties and pre-oxidation on solid-liquid separation of algae. Water Res 42:1827–1845

    CAS  Google Scholar 

  • Hermosilla Gomez Z (2009) Methodological development for the correct evaluation of the ecological status of the coastal waters of the Valencian Community, within the framework of the Water Framework Directive, using chlorophyll a as an indicator parameter of quality Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6064

  • Heubeck S, Craggs RJ, Shilton A (2007) Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol 55(11):193–200

    CAS  Google Scholar 

  • Horan NJ (1990) Biological Wastewater Treatment Systems. Theory and operation. John Wiley and Sons Ltd. Baffins Lane, Chickester. West Sussex, PO, UK

    Google Scholar 

  • Hozalski RM, Zhang L, Arnold WA (2001) Reduction of haloacetic acids by Fe0: implications for treatment and fate. Environ Sci Technol 35:2258–2263

    CAS  Google Scholar 

  • Jeon BH, Choi JA, Kim HC, Hwang JH, Abou-Shanab RAI, Dempsey BA, Regan JM, Kim JR (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6:37

    CAS  Google Scholar 

  • Jiménez B (2003) Health risks in aquifer recharge with recycled water. In: Aertgeerts R, Angelakis A (eds) Aquifer recharge using reclaimed water. WHO Regional Office for Europe, Copenhagen, pp 54–172

    Google Scholar 

  • Jiménez B, Mara D, Carr R, Brissaud F (2010) Wastewater treatment for pathogen removal and nutrient conservation: suitable systems for use in developing countries. In: Drechsel P, Scott CA, Raschid-Sally L, Redwood M, Bahri A (eds) Wastewater irrigation and health. Assessing and mitigating risk in low-income countries. International Water Management Institute and International Development Research Centre (IDRC), London, pp 149–169

    Google Scholar 

  • Jolis D, Hirano RA, Pitt PA, Müller A, Mamais D (1996) Assessment of tertiary treatment technology for water reclamation in San Francisco, California. Water Sci Technol 33:181–192

    CAS  Google Scholar 

  • Kelly-Gerreyn BA, Anderson TR, Holt JT, Gowen RJ, Proctor R (2004) Phytoplankton community structure at contrasting sites in the Irish Sea: a modelling investigation. Estuar Coast Shelf Sci 59:363–383

    CAS  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production – a review. Bioresour Technol 243:1194–1206

    CAS  Google Scholar 

  • Kim SW, Koo BS, Lee DH (2014) A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol 162:96–102

    CAS  Google Scholar 

  • Koivunen J (2007) Effects of conventional treatment, tertiary treatment and disinfection processes on hygienic and physico-chemical quality of municipal wastewaters. Dissertation, University of Kuopio

    Google Scholar 

  • Kong B, Shanks JV, Vigil RD (2013) Enhanced algal growth rate in a Taylor vortex reactor. Biotechnol Bioeng 110:2140–2149

    CAS  Google Scholar 

  • Konig A, Pearson HW, Silva SA (1987) Ammonia toxicity to algal growth in waste stabilization ponds. Water Sci Technol 19:115–122

    CAS  Google Scholar 

  • Korzeniewska E (2011) Emission of bacteria and fungi in the air from wastewater treatment plants - a review. Front Biosci. 1(3):393–407

    Google Scholar 

  • Kott Y, Rose N, Sperber S, Betzer N (1974) Bacteriophages as viral pollution indicators. Water Res 8:165–171

    Google Scholar 

  • Kumar K, Mishra SK, Choi G (2015) CO2 sequestration through algal biomass production. In: Das D (ed) Algal biorefinery: an integrated approach. Springer International Publishing, Cham

    Google Scholar 

  • Lebeau T, Robert JM (2006) Biotechnology of immobilized micro-algae: a culture technique for the future? In: Rao S (ed) Algal cultures, analogues of blooms and applications. Science Publishers, Enfield, NH, pp 801–837

    Google Scholar 

  • Li P, Miao X, Li R, Zhong J (2011) In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011:141207

    Google Scholar 

  • Litaker RW, Stewart TN, Eberhart BL, Wekell JC, Trainer VL et al (2008) Rapid enzyme-linked immunosorbent assay for detection of the algal toxin domoic acid. J Shellfish Res 27:1301–1310

    Google Scholar 

  • Liu D, Li D, Zhang B (2009) Removal of algal bloom in freshwater using magnetic polymer. Water Sci Technol 59:1085–1091

    CAS  Google Scholar 

  • Livingston RJ (2001) Eutrophication processes in coastal systems: origin and succession of plankton blooms and effects on secondary production in Gulf Coast estuaries. CRC Press, New York

    Google Scholar 

  • Lloyd BJ, Morris R (1983) Effluent and water treatment before disinfection. In: Bulter M, Medlen AR, Morris R (eds) Viruses and disinfection of water and wastewater. Univ. of Surrey Print Unit, Guild Ford, pp 154–189

    Google Scholar 

  • Markou G (2015) Fed-batch cultivation of Arthrospira and Chlorella in ammonia-rich wastewater: optimization of nutrient removal and biomass production. Bioresour Technol 193:35–41

    CAS  Google Scholar 

  • Masseret E, Amblard C, Bourdier G, Sargos D (2000) Effects of a waste stabilization lagoon discharge on bacterial and phytoplanktonic communities of a stream. Water Environ Res 72:285–294

    CAS  Google Scholar 

  • Matsumoto H, Hamasaki A, Shioji N, Ikuta Y (1996) Influence of dissolved oxygen on photosynthetic rate of microalgae. J Chem Eng Jpn 29:711–714

    CAS  Google Scholar 

  • Mawdsley JL, Bardgett RD, Merry RJ, Pain BF, Theodorou MK (1995) Pathogens in livestock waste, their potential for movement through soil and environmental pollution. Appl Soil Ecol 2:1–15

    Google Scholar 

  • Mayes WM, Batty LC, Younger PL, Jarvis AP, Kõiv M, Vohla C, Mander U (2009) Wetland treatment at extremes of pH: a review. Sci Total Environ 407:3944–3957

    CAS  Google Scholar 

  • Metcalf and Eddy (1991) Wastewater engineering treatment, disposal, and reuse. McGraw-Hill, New York

    Google Scholar 

  • Mezzari MP, Prandini JM, Kich JD, Silva MLB (2017) Elimination of antibiotic multi-resistant salmonella typhimurium from swine wastewater by microalgae-induced antibacterial mechanisms. J Bioremed Biodegr 8:1–4

    Google Scholar 

  • Misal N, Mohite NA (2017) Community wastewater treatment by using vermifiltration technique. Int J Eng Res Technol 10(1):363–365

    Google Scholar 

  • Mitchell R (1992) Environmental microbiology. Wiley-liss Inc, New York, p 411

    Google Scholar 

  • Mohamed ZA (2008) Polysaccharides as a protective response against microcystin-induced oxidative stress in Chlorella vulgaris and Scenedesmus quadricauda and their possible significance in the aquatic ecosystem. Ecotoxicology 17:504–516

    CAS  Google Scholar 

  • Mohiyaden HA, Sidek LM, Salih GHA, Birima AH, Basri H, Sabri AFM, Noh MD (2016) Conventional methods and emerging technologies for urban river water purification plant: a short review. ARPN J Eng Appl Sci 11(4):2547–2556

    CAS  Google Scholar 

  • Molinuevo-Salces B, Mahdy A, Ballesteros M, González-Fernández C (2016) From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion. Renew Energy 96:1103–1110

    CAS  Google Scholar 

  • Molla AH, Fakhru’l-Razi A, Alam MZ (2004) Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental friendly disposal technique. Water Res 38(19):4143–4152

    Google Scholar 

  • Morão AEC (2008) Transport mechanisms governing the nanofiltration of multicomponent solutions – application to the isolation of clavulanic acid. Universidade Téchica de Lisboa, 1649-004 Lisboa

    Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    CAS  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    CAS  Google Scholar 

  • Mulder M (1996) Basic principles of membrane technology. J Memb Sci 72(3):564

    Google Scholar 

  • Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815

    Google Scholar 

  • Munoz R, Guieysse B (2008) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Google Scholar 

  • Munoz R, Kollner C, Guieysse B, Mattiasson B (2004) Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol Bioeng 87(6):797–803

    CAS  Google Scholar 

  • Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–60

    CAS  Google Scholar 

  • Muttamara S (1996) Wastewater characteristics. Resour Conserv Recycl 16:145–159

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013a) Biological hydrogen production from starch wastewater using a novel up-flow anaerobic staged reactor. Bio Resources 8:4951–4968

    Google Scholar 

  • Nasr M, Tawfik A, Ookawara S, Suzuki M (2013b) Environmental and economic aspects of hydrogen and methane production from starch wastewater industry. J Water Environ Technol 11:463–475

    Google Scholar 

  • Nieuwstad TJ, Mulder EP, Havelaar AH, van Olphen M (1988) Elimination of microorganisms from wastewater by tertiary precipitation and simultaneous precipitation followed by filtration. Water Res 22:1389–1397

    CAS  Google Scholar 

  • Ødegaard H (2001) The use of dissolved air flotation in municipal wastewater treatment. Water Sci Technol 43:75–81

    Google Scholar 

  • Odegaard H, Rusten B, Swestrum T (1994) A new moving bed biofilm reactor – applications and results. Water Sci Technol 29(10–11):157–165

    Google Scholar 

  • Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation—development of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218

    Google Scholar 

  • Okoh AT, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving water sheds. Afr J Biotechnol 6(25):2932–2944

    CAS  Google Scholar 

  • Olguın EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Google Scholar 

  • Olguín EJ, Galicia S, Mercado G, Pérez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Google Scholar 

  • Olguın EJ, Sanchez G, Mercado G (2004) Cleaner production and environmentally sound biotechnology for the prevention of upstream nutrient pollution in the Mexican coast of the Gulf of Mexico. Ocean Coast Manag 47:641–670

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • Padisák J, Borics G, Grigorszky I, Soróczki-Pintér É (2006) Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553:1–14

    Google Scholar 

  • Pandey A, Chang JS, Patrick H, Christian L (2013) Biohydrogen. Elsevier Science & Technology

    Google Scholar 

  • Peavy SH, Rowe DR, Tchobanoglous G (1985) Environmental Engineering. International Edition. MacGraw-Hill pp. 207–322

    Google Scholar 

  • Petrovic M, Diaz A, Ventura F, Barceló D (2003) Occurrence and removal of estrogenic short-chain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production. Env Sci Technol 37:4442–4448

    CAS  Google Scholar 

  • Pinto Filho ACT, Brandão CCS (2001) Evaluation of flocculation and dissolved air flotation as an advanced wastewater treatment. Water Sci Technol 43:83–90

    CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    CAS  Google Scholar 

  • Posadas E, Bochon S, Coca M, García-González MC, Garcıá-Encina PA, Muñoz R (2014) Microalgae-based agro-industrial wastewater treatment: a preliminary screening of biodegradability. J Appl Phycol 26:2335–2345

    CAS  Google Scholar 

  • Posadas E, Morales MM, Gómez C, Acén FG, Muñoz R (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248

    CAS  Google Scholar 

  • Posadas E, Alcántara C, Garcá-Encina PA, Gouveia L, Guieysse B, Norvill Z, Acién FG, Markou G, Congestri R, Koreiviene J, Muñoz R (2017) Microalgae cultivation in wastewater. In: Fernandez GC, Muñoz R (eds) Microalgae-based biofuels and bioproducts from feedstock cultivation to end-products. Woodhead Publishing House, 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States. pp 67–91

    Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain 31:29–36

    CAS  Google Scholar 

  • Prabu LS, Suriyaprakash TNK, Ashok Kumar J (2011) Wastewater treatment technologies: a review. Pharma Times 43:55–62

    Google Scholar 

  • Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour Technol 135:232–238

    CAS  Google Scholar 

  • Prajapati SK, Choudhary P, Malik A, Vijay VK (2014) Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour Technol 167:260–268

    CAS  Google Scholar 

  • Ramanna L, Guldhe A, Rawat I, Bux F (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168:127–135

    CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    CAS  Google Scholar 

  • Rawat I, Gupta SK, Shriwastav A, Singh P, Kumari S, Bux F (2016) Microalgae applications in wastewater treatment. In: Bux F, Chisti Y (eds) Algae biotechnology products and processes. Springer International Publishing, Switzerland, p.249–268

    Google Scholar 

  • Reynolds TD (1982) Unit operations and processes in environmental engineering. Thomson-Engineering, Toronto

    Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Google Scholar 

  • Rosen M, Welander T, Lofqvist A (1998) Development of a new process for treatment of a pharmaceutical wastewater. Water Sci Technol 37:251–258

    CAS  Google Scholar 

  • Roy S, Das D (2015) Gaseous fuels production from algal biomass. In: Das D (ed) Algal biorefinery: an integrated approach. Springer International Publishing, Cham

    Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Minerals Eng 15:139–155

    CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    CAS  Google Scholar 

  • Russell DL (2006) Practical wastewater treatment. John Wiley and Sons, Inc, ISBN-13:978–0–471-78044-1, Hoboken, NJ

    Google Scholar 

  • Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321:21–46

    CAS  Google Scholar 

  • Samer M (2015) Biological and chemical wastewater treatment processes. In Samer M (ed.) InTech. https://doi.org/10.5772/61250. Available from https://www.intechopen.com/books/wastewater-treatment-engineering/biological-and-chemical-wastewater-treatment-processes

  • Samorì G, Samorì C, Guerrini F, Pistocchi R (2013) Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Res 47:791–801

    Google Scholar 

  • Schultz T E (2005) Biotreating process wastewater: airing the options. Chemical Engineering Magazine

    Google Scholar 

  • Servos MR, Bennie DT, Burnison BK (2005) Distribution of estrogens, 17𝛽-estradiol and estrone, in Canadian municipal wastewater treatment plants. Sci Total Environ 336:155–170

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Shi H (2009) Industrial wastewater - Types, amounts and effects. Point Sources of Pollution: Local Effects and Its Control. Vol. I

    Google Scholar 

  • Shon HK, Vigneswaran S, Kandasamy J, Cho J (2009) Membrane technology for organic removal in wastewater. In: Vigneswaran S (ed) Water and wastewater treatment technologies, in encyclopedia of life support systems (EOLSS) developed under the auspices of the UNESCO. Eolss Publishers, Oxford. Available at http://www.eolss.net. Retrieved at 24 Aug 2011

    Google Scholar 

  • Show KY, Lee DJ (2014) Production of biohydogen from microalgae. In: Ashok P, Duu-Jong L, Yusuf C, Carlos SR (eds) Biofuels from algae. Elsevier, Burlington, MA

    Google Scholar 

  • Shrestha A (2013) Specific moving bed biofilm reactor in nutrient removal from municipal wastewater. Thesis. University of Technology, Sydney

    Google Scholar 

  • Sincero AP, Sincero GA (2003) Physical–chemical treatment of water and wastewater. CRC Press, Florida

    Google Scholar 

  • Sinha RK, Bharambe G, Chaudhari U (2008) Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: a low cost sustainable technology over conventional systems with potential for decentralization. Springer Science 28:409–420

    Google Scholar 

  • Sirianuntapiboon S, Chairattanawan K, Jungphungsukpanich S (2006) Some properties of a sequencing batch reactor system for removal of vat dyes. Bioresour Technol 97:1243–1252

    CAS  Google Scholar 

  • Sobsey MD (1989) Inactivation of health-related microorganisms in water by disinfection processes. Water Sci Technol 21(3):179–195

    CAS  Google Scholar 

  • Suffet IH, Ho J, Chou D, Khiari D, Mallevialle J (1995) Taste and odor problems observed during drinking water treatment. In: Suffet IH, Mallevialle J, Kawczynski E (eds) Advances in taste-and-odor treatment and control. American Water Works Association. 1199 North Fairfax Street, Suite 900, Alexandria, Virginia

    Google Scholar 

  • Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8:313–321

    CAS  Google Scholar 

  • Sun YX, Wu QY, Hu HY, Tian J (2009) Effects of operating conditions on THMs and HAAs formation during wastewater chlorination. J Hazard Mater 168:1290–1295

    CAS  Google Scholar 

  • Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiogical safety of drinking water. Ann Rev Microbiol 54:81–127

    CAS  Google Scholar 

  • Tebbutt THY (1983) Principles of water quality control. Pergammon Press, Oxford

    Google Scholar 

  • Topare NS, Attar SJ, Manfe MM (2011) Sewage/wastewater treatment technologies: a review. Sci Revs Chem Commun 1:18–24

    Google Scholar 

  • Toze S (1997) Microbial pathogens in wastewater. CSIROL and Water Technical Report

    Google Scholar 

  • Tran DT, Chen CL, Chang JS (2013) Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Bioresour Technol 135:213–221

    CAS  Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. Bioresour Technol 40:183–187

    CAS  Google Scholar 

  • Urase T, Kikuta T (2005) Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res 39:1289–1300

    CAS  Google Scholar 

  • Van der Steen P, Brenner A, Shabtai Y, Oron G (2000) The effect of environmental conditions on faecal coliform decay in post-treatment of UASB reactor effluent. Water Sci Technol 42:111–118

    Google Scholar 

  • Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    CAS  Google Scholar 

  • Vieno N, Tuhkanen T, Kronberg L (2006) Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation. Environ Technol 27:183–192

    CAS  Google Scholar 

  • Voltolina D, Cordero B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp. in artificial wastewater. Bioresour Technol 68:265–268

    CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y et al (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186

    CAS  Google Scholar 

  • Wang N, Tahmasebi A, Yu J, Xu J, Huang F, Mamaeva A (2015) A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour Technol 190:89–96

    CAS  Google Scholar 

  • Weber WJ (1972) Physicochemical processes for water quality control. Wiley & Sons, New York

    Google Scholar 

  • WEF (1996) Wastewater Disinfection: Manual of Practice No. FD-10, Water Environment Federation, Alexandria, Virginia

    Google Scholar 

  • WEF (2008) Industrial wastewater management, treatment and disposal. 3rd ed., Manual of Practice No. FD-3 Water Environment Federation: Alexandria, Virginia

    Google Scholar 

  • Westerhoff P, Yoon Y, Snyder S, Wert E (2005) Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ Sci Technol 39:6649–6663

    CAS  Google Scholar 

  • WHO (1989) Health guidelines for the use of waste water in agriculture and aquaculture. Technical Report. Series No. 74, World Health Organization, Geneva

    Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    CAS  Google Scholar 

  • Wrigley TJ, Toerien DF (1990) Limnological aspects of small sewage ponds. Water Res 24:83–90

    CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    CAS  Google Scholar 

  • Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ Int. 1(86):14–23

    Google Scholar 

  • Xia A, Cheng J, Lin R, Lu H, Zhou J, Cen K (2013) Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour Technol 138:204–213

    CAS  Google Scholar 

  • Xia A, Cheng J, Ding L, Lin R, Song W, Zhou J, Cen K (2014) Effects of changes in microbial community on the fermentative production of hydrogen and soluble metabolites from Chlorella pyrenoidosa biomass in semi-continuous operation. Energy 68:982–988

    CAS  Google Scholar 

  • Xiao LW, Rodgers M, Mulqueen J (2007) Organic carbon and nitrogen removal from a strong wastewater using a denitrifying suspended growth reactor and a horizontal-flow biofilm reactor. Bioresour Technol 98:739–744

    CAS  Google Scholar 

  • Yun YM, Jung KW, Kim DH, Oh YK, Cho SK, Shin HS (2013) Optimization of dark fermentative H2 production from microalgal biomass by combined (acid + ultrasonic) pretreatment. Bioresour Technol 141:220–226

    CAS  Google Scholar 

  • Zamalloa C, Boon N, Verstraete W (2012) Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energ 92:733–738

    CAS  Google Scholar 

  • Zhang W, DiGiano FA (2002) Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water Res 36:1469–1482

    CAS  Google Scholar 

  • Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    CAS  Google Scholar 

  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD (2008) Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rouf Ahmad Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, R.A., Sharma, N., Kaur, K., Phutela, U.G. (2019). Feasibility of Microalgal Technologies in Pathogen Removal from Wastewater. In: Gupta, S.K., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13913-1_12

Download citation

Publish with us

Policies and ethics