Skip to main content

Astaxanthin Production by Microalgae Haematococcus pluvialis Through Wastewater Treatment: Waste to Resource

  • Chapter
  • First Online:
Book cover Application of Microalgae in Wastewater Treatment

Abstract

Green microalga Haematococcus pluvialis produces a keto-carotenoid astaxanthin with a high antioxidant activity during induction of vegetative cells to cyst cells. Astaxanthin plays an important role in the food, cosmetics, nutraceutical, and aquaculture industries. Wastewater provides water and necessary nutrients for algae cultivation. Microalgae can be used as an economical and feasible way of wastewater treatment coupling with the concurrent creation of high-value products. Microalgae show higher efficiency in nutrient removal than other microorganisms because the nutrients (ammonia, nitrate, phosphate, urea and trace elements) present in various wastewaters are essential for microalgal growth. Although there are a substantial number of researches available on the utilization of various microalgae species for wastewater treatment and nutrient removal, wastewater treatment and astaxanthin production by Haematococcus pluvialis are less investigated. This chapter describes the current knowledge about microalga H. pluvialis-derived astaxanthin, its application and market potential, and culture conditions and nutritional requirements of this microalgal cell growth and astaxanthin formation. The potentiality of microalgae cultivation using various wastewater and integration of H. pluvialis culture in different wastewater streams and nutrient removal and biomass production efficiency are also discussed. Furthermore, the challenges associated with growing H. pluvialis in wastewaters and possible ways to overcome such challenges have been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    CAS  Google Scholar 

  • Acien G, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  CAS  Google Scholar 

  • Aflalo C, Meshulam Y, Zarka A, Boussiba S (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis. Biotechnol Bioeng 98:300–305

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Unnikannan P, Sruthi P (2015) Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int J Phytoremediation 7:907–916

    Article  CAS  Google Scholar 

  • Ako H, Tamaru CS (1999) Are feeds for food fish practical for aquarium fish? Int Aqua Feeds 2:30–36

    Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Andersen LP, Holck S, Kupcinskas L, Kiudelis G, Jonaitis L, Janciauskas D, Permin H, Wadstrom T (2007) Gastric inflammatory markers and interleukins in patients with functional dyspepsia treated with astaxanthin. FEMS Immunol Med Microbiol 50:244–248. https://doi.org/10.1111/j.1574-695X.2007.00257.x

    Article  CAS  Google Scholar 

  • Andrisani A, Donà G, Tibaldi E, Brunati AM, Sabbadin C, Armanini D, Alvisi G, Gizzo S, Ambrosini G, Ragazzi E, Bordin L (2015) Astaxanthin improves human sperm capacitation by inducing lyn displacement and activation. Mar Drugs 13:5533–5551. https://doi.org/10.3390/md13095533

    Article  CAS  Google Scholar 

  • Arai S, Mori T, Miki W, Yamaguchi K, Konosu S, Satake M, Fujita T (1987) Pigmentation of juvenile coho salmon with carotenoid oil extracted from Antarctic krill. Aquaculture 66:255–264. https://doi.org/10.1016/0044-8486(87)90111-6

    Article  CAS  Google Scholar 

  • Arnon D (1961) Cell-free photosynthesis and the energy conversion process. Light Life 1961:489–566

    Google Scholar 

  • Bischoff HW, Bold HC (1963) Psychological studies IV. In: Some soil algae from enchanted rock and related algal species. University of Texas Publications, Austin, p 95

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialisation. J Appl Phycol 25:743–756. https://doi.org/10.1007/s10811-013-9983-9

    Article  CAS  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plantarum 108:111–117. https://doi.org/10.1034/j.1399-3054.2000.108002111.x

    Article  CAS  Google Scholar 

  • Boussiba S, Bing W, Yuan JP, Zarka A, Chen F (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol Lett 21:601–604. https://doi.org/10.1023/A:1005507514694

    Article  CAS  Google Scholar 

  • Burlew JS (1953) Algal culture: from laboratory to pilot plant. Carnegie Institute, Washington Publication, p 600

    Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energy Rev 19:360–369

    Article  CAS  Google Scholar 

  • Capelli GC, Cysewski G (2013) The worlds' best kept health secret natural astaxanthin. Cyanotech Corporation, Kailua-Kona

    Google Scholar 

  • Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the White Sea coastal rocks (Russia). Mar Drugs 12:4504–4520. https://doi.org/10.3390/md12084504

    Article  CAS  Google Scholar 

  • Chen F, Chen H, Gong X (1997) Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresour Technol 62:19–24. https://doi.org/10.1016/S0960-8524(97)00115-6

    Article  CAS  Google Scholar 

  • Chew BP, Park JS, Hayek MG, Massimino S, Reinhart GA (2004) Dietary astaxanthin stimulates cell-mediated and humoral immune response in cats. FASEB J 18:533

    Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chinnasamy S, Rao PH, Bhaskar S, Rengasamy R, Singh M (2012) Algae: a novel biomass feedstock for biofuels. In Arora R (Ed.) Microbial Biotechnology: Energy and Environment, pp. 224–239

    Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  Google Scholar 

  • Choi Y, Yun Y, Park JM, Yang J (2011) Determination of the time transferring cells for astaxanthin production considering two-stage process of Haematococcus pluvialis cultivation. Bioresour Technol 102(24):11249–11253

    Article  CAS  Google Scholar 

  • Choubert G, Heinrich O (1993) Carotenoid pigments of the green alga Haematococcus pluvialis: assay on rainbow trout, Oncorhynchus mykiss, pigmentation in comparison with synthetic astaxanthin and canthaxanthin. Aquaculture 112:217–226. https://doi.org/10.1016/0044-8486(93)90447-7

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Comhaire FH, El Garem Y, Mahmoud A, Eertmans F, Schoonjans F (2005) Combined conventional/ antioxidant “Astaxanthin” treatment for male infertility: a double blind randomized trial. Asian J Androl 7:257–262. https://doi.org/10.1111/j.1745-7262.2005.00047.x

    Article  CAS  Google Scholar 

  • Craggs RJ, Heubeck SM, Lundquist TJ, Benemann J (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665

    Article  CAS  Google Scholar 

  • Dela Noue J, Laliberte G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • Del Río E, Acién FG, García-Malea MC, Rivas J, Del Rio E, Acién FG, García-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91:808–815

    Article  CAS  Google Scholar 

  • Del Rio E, Acien FG, Garcia-Malea MC, Rivas J, Molina-Grima E, Guerrero MG (2007) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100:397–402. https://doi.org/10.1002/bit.21770

    Article  CAS  Google Scholar 

  • Dickinson KE, Whitney CG, McGinn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp AMDD. Algal Res 2:127–134

    Article  Google Scholar 

  • Ding J, Zhao F, Cao Y, Xing L, Liu W, Mei S, Li S (2015) Cultivation of microalgae in dairy farm wastewater without sterilization. Int J Phytoremediation 17:222–227

    Article  CAS  Google Scholar 

  • Domínguez-Bocanegra AR, Guerrero Legarreta I, Martinez Jeronimo F, Tomasini Campocosio A (2004) Influence of environmental and nutritional factors in the production of astaxanthin from Haematococcus pluvialis. Bioresour Technol 92:209–214. https://doi.org/10.1016/j.biortech.2003.04.001

    Article  CAS  Google Scholar 

  • Elgarem Y, Lignell A, Comhaire FH (2002) Supplementation with Astaxanthin (Astacarox) improves semen quality in infertile men. In: Proceedings of the 13th international carotenoid symposium, Honolulu, pp 180–197

    Google Scholar 

  • Elwinger K, Lignell A, Wilhelmson M (1997) Astaxanthin rich algal meal (Haematococcus pluvialis) as carotenoid source in feed for laying hens. In: Proceedings of the VII European symposium on the quality of eggs and egg products, Poznan, pp 52–59

    Google Scholar 

  • European Commission on Environmnet (2002) Heavy metals in wastes. COWI A/S, Copenhagen

    Google Scholar 

  • Eyster C (1964) Micronutrient requirements for green plants, especially algae. In: Algae and man. Springer, pp 86–119

    Google Scholar 

  • Fábregas J, Domínguez A, Regueiro M, Maseda A, Otero A (2000) Optimization of culture medium for the continuous cultivation of the microalga Haematococcus pluvialis. Appl Microbiol Biotechnol 53:530–535. https://doi.org/10.1007/s002530051652

    Article  Google Scholar 

  • Fábregas J, Otero A, Maseda A, Domínguez A (2001) Two-stage cultures for the production of astaxanthin from Haematococcus pluvialis. J Biotechnol 89:65–71. https://doi.org/10.1016/S0168-1656(01)00289-9

    Article  Google Scholar 

  • Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus pluvialis(Chlorophyceae). J Phycol 30:829–833. https://doi.org/10.1111/j.0022-3646.1994.00829.x

    Article  Google Scholar 

  • Farooq W, Lee Y, Ryu B, Kim B, Kim H, Choi Y, Yang J (2013) Two-stage cultivation of two Chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  Google Scholar 

  • Fenton O, hUallachain DO (2012) Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56

    Article  CAS  Google Scholar 

  • García-Malea MC, Acién FG, Del Río E, Fernández JM, Cerón MC, Guerrero MG (2009) Production of astaxanthin by Haematococcus pluvialis: taking the one-step system outdoors. Biotechnol Bioeng 102:651–657. https://doi.org/10.1002/bit.22076

    Article  CAS  Google Scholar 

  • Gong XD, Feng C (1997) Optimization of culture medium for growth of Haematococcus pluvialis. J Appl Phycol 9:437–444

    Article  CAS  Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176

    Article  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21(5):210–216

    Article  CAS  Google Scholar 

  • Han D, Li Y, Hu Q (2013) Biology and commercial aspects of Haematococcus pluvialis. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Blackwell, Hoboken, pp 388–405

    Chapter  Google Scholar 

  • Haque F, Dutta A, Thimmanagari M, Chiang YW (2016a) Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Saf Environ Prot 111:128–137

    Article  CAS  Google Scholar 

  • Haque F, Dutta A, Thimmanagari M, Chiang YW (2016b) Intensified green production of astaxanthin from Haematococcus pluvialis. Food Bioprod Process 99:1–11

    Article  CAS  Google Scholar 

  • Harker M, Tsavalos AJ, Young AJ (1996) Autotrophic growth and carotenoid production of Haematococcus pluvialis in a 30 liter air-lift photobioreactor. J Ferment Bioeng 82:113–118

    Article  CAS  Google Scholar 

  • Hata N, Ogbonna JC, Hasegawa Y, Taroda H, Tanaka H (2001) Production of astaxanthin by Haematococcus pluvialis in a sequential heterotrophic-photoautotrophic culture. J Appl Phycol 13:395–402. https://doi.org/10.1023/A:1011921329568

    Article  CAS  Google Scholar 

  • He P, Duncan J, Barber J (2007) Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. J Integr Plant Biol 49:447–451. https://doi.org/10.1111/j.1744-7909.2007.00468.x

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196. https://doi.org/10.1080/10408690590957188

    Article  CAS  Google Scholar 

  • Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376. https://doi.org/10.1080/09670260802227736

    Article  CAS  Google Scholar 

  • Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod 69:443–449. https://doi.org/10.1021/np050354+

    Article  CAS  Google Scholar 

  • Inbbor J (1998) Haematococcus, the poultry pigmentor. Feed Mix 6:31–34

    Google Scholar 

  • Inborr J, Lignell Å (1997) Effect of feeding astaxanthin-rich algae meal (Haematococcus pluvialis) on performance and carotenoid concentration of different tissues of broiler chickens. In: Proceedings of the XIII WPSA conference on Poultry meat quality in Poznan, Poland, pp 39–43

    Google Scholar 

  • Industry Experts (2015) Global Astaxanthin market – sources, Technologies and Applications. Available online at: http://industry-experts.com/verticals/healthcare-and-pharma/global-astaxanthin-market-sources-technologies-and-applications

  • Issarapayup K, Powtongsook S, Pavasant P (2009) Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol 142:227–232. https://doi.org/10.1016/j.jbiotec.2009.04.014

    Article  CAS  Google Scholar 

  • Iwamoto T, Hosoda K, Hirano R, Kurata H, Matsumoto A, Miki W (2000) Inhibition of low-density lipoprotein oxidation by astaxanthin. J Atheroscler Thromb 7:216–222. https://doi.org/10.5551/jat1994.7.216

    Article  CAS  Google Scholar 

  • Ji MK, Abou-Shanab RAI, Kim SH, Salama ES, Lee SH, Kabra AN, Lee YS, Hong S, Jeon BH (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol Eng 58:142–148

    Article  Google Scholar 

  • Kabra AN, Salama el S, Roh HS, Kim JR, Lee DS, Jeon BH (2014) Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micractinium reisseri from concentrated municipal wastewater. Bioresour Technol 157:84–90

    Article  CAS  Google Scholar 

  • Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295. https://doi.org/10.1016/j.biortech.2006.01.011

    Article  CAS  Google Scholar 

  • Kakizono T, Kobayashi M, Nagai S (1992) Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga Haematococcus pluvialis. J Ferment Bioeng 74:403–405

    Article  CAS  Google Scholar 

  • Kamath BS, Srikanta BM, Dharmesh SM, Sarada R, Ravishankar GA (2008) Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur J Pharmacol 590:387–395. https://doi.org/10.1016/j.ejphar.2008.06.042

    Article  CAS  Google Scholar 

  • Kang CD, Lee JS, Park TH, Sim SJ (2005) Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis. Appl Microbiol Biotechnol 68:237–241. https://doi.org/10.1007/s00253-005-1889-2

    Article  CAS  Google Scholar 

  • Kang CD, An JM, Park TH, Sim SJ (2006) Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem Eng J 31:234–238

    Article  CAS  Google Scholar 

  • Kang CD, Lee D, Park J, Sim S (2007) Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl Microbiol Biotechnol 74:987–994

    Article  CAS  Google Scholar 

  • Kang CD, Han SJ, Choi SP, Sim SJ (2010) Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation. Bioprocess Biosyst Eng 33:133–139. https://doi.org/10.1007/s00449-009-0362-5

    Article  CAS  Google Scholar 

  • Karppi J, Rissanen TH, Nyyssönen K, Kaikkonen J, Olsson AG, Voutilainen S (2007) Effects of astaxanthin supplementation on lipid peroxidation. Int J Vitam Nutr Res 77:3–11. https://doi.org/10.1024/0300-9831.77.1.3

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferment Bioeng 71:335–339. https://doi.org/10.1016/0922-338X(91)90346-I

    Article  CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetateinduced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  Google Scholar 

  • Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509

    Article  CAS  Google Scholar 

  • Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63. https://doi.org/10.1016/j.algal.2014.09.002

    Article  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Xavier F, Langenhove MHV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  Google Scholar 

  • Kupcinskas L, Lafolie P, Lignell A, Kiudelis G, Jonaitis L, Adamonis K (2008) Efficacy of the natural antioxidant astaxanthin in the treatment of functional dyspepsia in patients with or without Helicobacter pylori infection: a prospective, randomized, double blind, and placebo-controlled study. Phytomedicine 15:391–399. https://doi.org/10.1016/j.phymed.2008.04.004

    Article  CAS  Google Scholar 

  • Lababpour A, Shimahara K, Hada K, Kyoui Y, Katsuda T, Katoh S (2005) Fedbatch culture under illumination with blue light emitting diodes (LEDs) for astaxanthin production by Haematococcus pluvialis. J Biosci Bioeng 100:339–342. https://doi.org/10.1263/jbb.100.339

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae-a literature review. Vatten 62:31

    CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Ledda C, Villegas GR, Adani F, Fernández FA, Grima EM (2015) Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25

    Article  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263. https://doi.org/10.1007/s10811-009-9453-6

    Article  CAS  Google Scholar 

  • Li J, Zhu DL, Niu J, Shen SD, Wang G (2011) An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol Adv 29:568–574. https://doi.org/10.1016/j.biotechadv.2011.04.001

    Article  CAS  Google Scholar 

  • Li M, Wu W, Zhou P, Xie F, Zhou Q, Kangsen Mai K (2014) Comparison effect of dietary astaxanthin and Haematococcus pluvialis on growth performance, antioxidant status and immune response of large yellow croaker Pseudosciaena crocea. Aquaculture 434:227–232. https://doi.org/10.1016/j.aquaculture.2014.08.022

    Article  CAS  Google Scholar 

  • Lignell A, Inborr J (1999) Agent for increasing the production of/in breeding and production mammals. Varmdo: European patent. EP0912106

    Google Scholar 

  • Lignell ANGK, Inborr J (2000) Agent for increasing the production of/in breeding and production mammals. Varmdo: United States patent and trademark office granted patent. WO97/35491

    Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Liu Y (2018) Optimization study of biomass and astaxanthin production by Haematococcus pluvialis under minkery wastewater cultures. Masters Thesis, Dalhousie University, Halifax, Nova Scotia, p 139

    Google Scholar 

  • Liu BH, Lee YK (2003) Effect of total secondary carotenoids extracts from Chlorococcum sp. on Helicobacter pylori-infected BALB/c mice. Int Immunopharmacol 3:979–986. https://doi.org/10.1016/S1567-5769(03)00096-1

    Article  CAS  Google Scholar 

  • Liu X, Osawa T (2007) Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem Biophys Res Commun 357:187–193. https://doi.org/10.1016/j.bbrc.2007.03.120

    Article  CAS  Google Scholar 

  • Liu Y, Yildiz I (2018) The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int J Energy Res 42:2997

    Article  CAS  Google Scholar 

  • Lopez MCGM, Sanchez ED, Lopez JLC, Fernandez FGA, Sevilla JMF, Rivas J, Guerrero MG, Grima EM (2006) Comparative analysis of the outdoor culture of Haematococcus pluvialis in tubular and bubble column photobioreactors. J Biotechnol 123:329–342

    Article  CAS  Google Scholar 

  • Lorenz RT (1999) A technical review of Haematococcus algae. NatuRose™ Technical Bulletin #060. Cyanotech Corporation, Kailua-Kona

    Google Scholar 

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    Article  CAS  Google Scholar 

  • Matamoros V, Rodriguez Y, Albaiges J (2016a) A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities. Water Res 88:777–785

    Article  CAS  Google Scholar 

  • Matamoros V, Uggetti E, García J, Bayona JM (2016b) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205

    Article  CAS  Google Scholar 

  • McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O’Leary SJ (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  Google Scholar 

  • Mehta CM, Khunjar WO, Nguyen V, Tait S, Batstone DJ (2015) Technologies to recover nutrients from waste streams: a critical review. Crit Rev Environ Sci Technol 45:385–427

    Article  Google Scholar 

  • Miyawaki H, Takahashi J, Tsukahara H, Takehara I (2008) Effects of astaxanthin on human blood rheology. J Clin Biochem Nutr 43:69–74. https://doi.org/10.3164/jcbn.2008048

    Article  CAS  Google Scholar 

  • Nagata A, Tajima T, Takahashi J (2006) Effect of astaxanthin 5 mg on anti fatigue and task performance of human. Carotenoid Sci 10:102–106

    Google Scholar 

  • Naguib YMA (2000) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48:1150–1154. https://doi.org/10.1021/jf991106k

    Article  CAS  Google Scholar 

  • Nakao R, Nelson OL, Park JS, Mathison BD, Thompson PA, Chew BP (2010) Effect of astaxanthin supplementation on inflammation and cardiac function in BALB/c mice. Anticancer Res 30:2721–2725

    CAS  Google Scholar 

  • Neveux N, Magnusson M, Mata L, Whelan A, de Nys R, Paul NA (2016) The treatment of municipal wastewater by the macroalga Oedogonium sp and its potential for the production of biocrude. Algal Res 13:284–292

    Article  Google Scholar 

  • Nishikawa Y, Minenaka Y, Ichimura M, Tatsumi K, Nadamoto T, Urabe K (2005) Effects of astaxanthin and vitamin C on the prevention of gastric ulcerations in stressed rats. J Nutr Sci Vitaminol (Tokyo) 51:135–141. https://doi.org/10.3177/jnsv.51.135

    Article  CAS  Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Orosa M, Torres E, Fidalgo P, Abalde J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556. https://doi.org/10.1023/A:1008173807143

    Article  CAS  Google Scholar 

  • Orosa M, Franqueira D, Cid A, Abalde J (2005) Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. Bioresour Technol 96:373–378

    Article  CAS  Google Scholar 

  • Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283:108–117. https://doi.org/10.1016/j.canlet.2009.03.031

    Article  CAS  Google Scholar 

  • Panis G (2015) Commercial Astaxanthin production derived by green alga Haematococcus pluvialis: a microalgae process model and a techno-economic assessment all through production line. Master Thesis, Utrecht University, Netherlands

    Google Scholar 

  • Parisenti J, Beirao LH, Maraschin M, Mourino JL, Nascimento Viera F, Do Nascimento Vieira F, Bedin LH (2011) Pigmentation and carotenoid content of shrimp fed with Haematococcus pluvialis and soy lecithin. Aquac Nutr 17:530–535. https://doi.org/10.1111/j.1365-2095.2010.00794.x

    Article  Google Scholar 

  • Park J, Craggs R, Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Park JC, Choi SP, Hong ME, Sim SJ (2014) Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two-stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst Eng 37:2039–2047. https://doi.org/10.1007/s00449-014-1180-y

    Article  CAS  Google Scholar 

  • Pérez-López P, González-García S, Jeffryes C, Agathos SN, McHugh E, Walsh D (2014) Life-cycle assessment of the production of the red antioxidant carotenoid astaxanthin by microalgae: from lab to pilot scale. J Clean Prod 64:332–344

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  Google Scholar 

  • Querques N, Cesta M, Santos RM, Chiang YW (2015) Microalgal phycocyanin productivity: strategies for phyco-valorization. J Chem Technol Biotechnol 90:1968–1982. https://doi.org/10.1002/jctb.4796

    Article  CAS  Google Scholar 

  • Ranga Rao A, Harshvardhan Reddy A, Aradhya SM (2010) Antibacterial properties of Spirulina platensis, Haematococcus pluvialis, Botryococcus braunii micro algal extracts. Curr Trends Biotechnol Pharm 4:809–819

    Google Scholar 

  • Ranga Rao A, Sindhuja HN, Dharmesh SM, Sankar KU, Sarada R, Ravishankar GA (2013) Effective inhibition of skin cancer, tyrosinase, and antioxidative properties by astaxanthin and astaxanthin esters from the green alga Haematococcus pluvialis. J Agric Food Chem 61:3842–3851. https://doi.org/10.1021/jf304609j

    Article  CAS  Google Scholar 

  • Ranga Rao A, Siew Moi P, Ravi S, Aswathanarayana RG (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152

    Article  CAS  Google Scholar 

  • Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S (2008) High efficiency production of astaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem Eng J 39:575–580. https://doi.org/10.1016/j.bej.2007.11.010

    Article  CAS  Google Scholar 

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury M, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  • Rogers JN, Rosenberg JN, Guzman BJ, Oh VH, Mimbela LE, Ghassemi A, Betenbaugh MJ, Oyler GA, Donohue MD (2014) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88

    Article  Google Scholar 

  • Ruen-ngam D, Shotipruk A, Pavasant P (2010) Comparison of extraction methods for recovery of Astaxanthin from Haematococcus pluvialis. Sep Sci Technol 46:64–70

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  • Saha SK, McHugh E, Hayes J, Moane S, Walsh D, Murray P (2013) Effect of various stressregulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol 128:118–124. https://doi.org/10.1016/j.biortech.2012.10.049

    Article  CAS  Google Scholar 

  • Salama ES, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211

    Article  CAS  Google Scholar 

  • Sarada R, Bhattacharya S, Ravishankar GA (2002a) Optimization of culture conditions for growth of the green alga Haematococcus pluvialis. World J Microbiol Biotechnol 18:517–521. https://doi.org/10.1023/A:1016349828310

    Article  CAS  Google Scholar 

  • Sarada R, Tripathi U, Ravishankar GA (2002b) Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem 37:623–627. https://doi.org/10.1016/S0032-9592(01)00246-1

    Article  CAS  Google Scholar 

  • Sato H, Nagare H, Huynh TNC, Komatsu H (2015) Development of a new wastewater treatment process for resource recovery of carotenoids. Water Sci Technol 72:1191–1197

    Article  CAS  Google Scholar 

  • Seki T, Sueki H, Kono H, Suganuma K, Yamashita E (2001) Effects of astaxanthin from Haematococcus pluvialis on human skin-patch test; skin repeated application test; effect on wrinkle reduction. Fragrance J 12:98–103

    Google Scholar 

  • Shah MMR, Liang Y, Cheng JJ, Daroch M (2016) Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci 7:531

    Google Scholar 

  • Sheikhzadeh N, Panchah IK, Asadpour R, Tayefi-Nasrabadi H, Mahmoudi H (2012a) Effects of Haematococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout (Oncorhynchus mykiss). Anim Reprod Sci 130:119–123

    Article  Google Scholar 

  • Sheikhzadeh N, Tayefi-Nasrabadi H, Oushani AK, Najafi Enferadi MH (2012b) Effects of Haematococcus pluvialis supplementation on antioxidant system and metabolism in rain- bow trout (Oncorhynchus mykiss). Fish Physiol Biochem 38:413–419

    Article  CAS  Google Scholar 

  • Shen Y (2014) Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Adv 4:49672–49722

    Article  CAS  Google Scholar 

  • Solovchenko A (2013) Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russ J Plant Physiol 60:1–13

    Article  CAS  Google Scholar 

  • Sommer TR, Potts WT, Morrissy NM (1991) Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1970) Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters. Willey-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  • Tjahjono AE, Hayama Y, Kakizono T, Terada Y, Nishio N, Nagai S (1994) Hyper accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138. https://doi.org/10.1007/BF01021659

    Article  CAS  Google Scholar 

  • Tolasa S, Cakli S, Ostermeyer U (2005) Determination of astaxanthin and canthaxanthin in salmonid. Eur Food Res Technol 221:787–791. https://doi.org/10.1007/s00217-005-0071-5

    Article  CAS  Google Scholar 

  • Tominaga K, Hongo N, Karato M, Yamashita E (2012) Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim Pol 59:43–47

    Article  CAS  Google Scholar 

  • Torrissen OJ, Naevdal G (1984) Pigmentation of salmonids — genetical variation in carotenoid deposition in rainbow trout. Aquaculture 38:59–66

    Article  CAS  Google Scholar 

  • Torzillo G, Goksan T, Faraloni C, Kopecky J, Masojidek J (2003) Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage. J Appl Phycol 15:127–136

    Article  CAS  Google Scholar 

  • Tripathi U, Sarada R, Ramachandra Rao S, Ravishankar GA (1999) Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour Technol 68:197–199. https://doi.org/10.1016/S0960-8524(98)00143-6

    Article  CAS  Google Scholar 

  • Wan M, Zhang J, Hou D, Fan J, Li Y, Huang J (2014a) The effect of temperature on cell growth and astaxanthin accumulation of Haematococcus pluvialis during a light–dark cyclic cultivation. Bioresour Technol 167:276–283. https://doi.org/10.1016/j.biortech.2014.06.030

    Article  CAS  Google Scholar 

  • Wan M, Hou D, Li Y, Fan J, Huang J, Liang S (2014b) The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Bioresour Technol 163:26–32. https://doi.org/10.1016/j.biortech.2014.04.017

    Article  CAS  Google Scholar 

  • Wang P (2014) Culture medium and culture method for culturing Haematococcus pluvialis by using brewery wastewater. Patent no CN103966103A

    Google Scholar 

  • Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis(Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124

    Article  CAS  Google Scholar 

  • Wang JF, Han DX, Sommerfeld MR, Lu CM, Hu Q (2013a) Effect of initial biomass density on growth and astaxanthin production of Haematococcus pluvialis in an outdoor photobioreactor. J Appl Phycol 25:253–260. https://doi.org/10.1007/s10811-012-9859-4

    Article  CAS  Google Scholar 

  • Wang JF, Sommerfeld MR, Lu CM, Hu Q (2013b) Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28:193–202

    Article  CAS  Google Scholar 

  • Wayama M, Ota S, Matsuura H, Nango N, Hirata A, Kawano S (2013) Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis. PLoS One 8:e53618. https://doi.org/10.1371/journal.pone.0053618

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  Google Scholar 

  • Woertz IC, Benemann JR, Du N, Unnasch S, Mendola D, Mitchell BG, Lundquist TJ (2014) Life cycle GHG emissions from microalgal biodiesel–a CA-GREET model. Environ Sci Technol 48:6060–6068

    Article  CAS  Google Scholar 

  • Wu YH, Yang J, Hu HY, Yu Y (2013) Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol Eng 60:155–159. https://doi.org/10.1016/j.ecoleng.2013.07.066

    Article  Google Scholar 

  • Yamashita E (2002) Cosmetic benefit of dietary supplements containing astaxanthin and tocotrienol on human skin. Food Style 21:112–117

    Google Scholar 

  • Yang Y, Kim B, Lee JY (2013) Astaxanthin structure, metabolism, and health benefits. J Hum Nutr Food Sci 1003:1–11

    Google Scholar 

  • Yin S, Wang J, Chen L, Liu T (2015) The water footprint of biofilm cultivation of Haematococcus pluvialis is greatly decreased by using sealed narrow chambers combined with slow aeration rate. Biotechnol Lett 37:1819–1827

    Article  CAS  Google Scholar 

  • Yoo JJ, Choi SP, Kim BW, Sim SJ (2012) Optimal design of scalable photobioreactor for phototropic culturing of Haematococcus pluvialis. Bioprocess Biosyst Eng 35:309–315

    Article  CAS  Google Scholar 

  • Yu X, Chen L, Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front Microbiol 6:56

    Google Scholar 

  • Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165

    Article  CAS  Google Scholar 

  • Zhang B, Geng Y, Li Z, Hu H, Li Y (2009) Production of astaxanthin from Haematococcus in open pond by two-stage growth one-step process. Aquaculture 295:275–281

    Article  CAS  Google Scholar 

  • Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge overall support provided by his parents and family.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, M.M.R. (2019). Astaxanthin Production by Microalgae Haematococcus pluvialis Through Wastewater Treatment: Waste to Resource. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_2

Download citation

Publish with us

Policies and ethics