Skip to main content

Industrial Wastewater-Based Algal Biorefineries: Application Constraints and Future Prospects

  • Chapter
  • First Online:

Abstract

Polluted wastewater is generated in copious amounts with the ever-increasing demands of the industrial modern world. Currently, the treatment options for cleaning polluted wastewater are limited. A more recent method of treatment is with algal biorefineries. The following is a review of the applications, constraints, and future prospects of using algal-based biorefineries. The industries covered are the tannery, pulp and paper, and textile industry wastewater. The growth of the industrial sector also sees a growth in the pollution of the environment, specifically the aquatic environments. Phycoremediation is a preferred method due to the fact that there are no secondary pollutants produced as long as the biomass that is produced is reused. For decades, microalgae have been used in the pharmaceutical industry as well as the cosmetic and nutrition sectors. Presently, they are being explored for their potential in the energy sector to replace the use of fossil fuels. Heavy metal and other harsh chemical pollution is a significant issue in many industries. However, several species of algae including Chlorella spp., Synechocystis spp., Scenedesmus spp., and Spirulina spp. have shown to be effective heavy metal reducers. Enabling the remediation ability of microalgae in industrial wastewater and combining it with the biorefinery approach could lead to a cleaner, more cost-effective source of fuel. Replacing standard fossil fuels with algae products could reduce carbon emissions and slow the process of climate change. Research in using algal products for phycoremediation of wastewater and as a source of fuel is an up-and-coming technology that has the potential to make drastic and positive environmental changes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ajayan KV, Selvaraju M (2012) Heavy metal induced antioxidant defense system of green microalgae and its effective role in phycoremediation of tannery effluent. Pak J Biol Sci 15(22):1056–1062

    Article  CAS  Google Scholar 

  • Ansari FA, Wahal S, Gupta SK, Rawat I, Bux F (2017) A comparative study on biochemical methane potential of algal substrates: implications of biomass pre-treatment and production extraction. Bioresour Technol 234:320–326

    Article  CAS  Google Scholar 

  • Aravindhan R, Madhan B, Rao JR, Nair BU, Ramasami T (2004) Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ Sci Technol 38(1):300–306. https://doi.org/10.1021/es034427s

    Article  CAS  Google Scholar 

  • Bakke T, Klungsøyr J, Sanni S (2013) Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar Environ Res 92:154–169

    Article  CAS  Google Scholar 

  • Bayramoğlu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81:35–43

    Article  Google Scholar 

  • Beg KR, Ali S (2008) Chemical contaminants and toxicity of Ganga river sediment from up and down stream area at Kanpur. https://doi.org/10.3844/ajessp.2008.362.366

    Article  CAS  Google Scholar 

  • Bhatia D, Sharma NR, Singh J, Kanwar R (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chabukdhara M, Gupta SK, Gogoi M (2017) Phycoremediation of heavy metals coupled with generation of bioenergy. In: Algal biofuels: recent advances and future prospects. Springer International Publishing, pp 163–188

    Google Scholar 

  • Chew K, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, Lee D, Chang J (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Górecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153

    Article  CAS  Google Scholar 

  • Daneshvar E, Antikainen L, Koutra E, Kornaros M, Bhatnagar A (2018) Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction. Bioresour Technol 255:102–110

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96(6):1051–1063

    Article  CAS  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56:246–255

    Article  CAS  Google Scholar 

  • Dönmez GÇ, Aksu Z, Öztürk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34:885–892

    Article  Google Scholar 

  • Entrekin S, Evans-White M, Johnson B, Hagenbuch E (2011) Rapid expansion of natural gas development poses a threat to surface waters. Front Ecol Environ 9(9):503–511

    Article  Google Scholar 

  • Fazal T, Mushtaq A, Rehman F, Khan AU, Rashid N, Farooq W, Rehman MSU, Xu J (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sust Energ Rev 82:3107–3126

    Article  CAS  Google Scholar 

  • Ferreira LS, Rodrigues MS, Carlos MDCJ, Alessandra L, Elisabetta F, Patrizia P, Attilio C (2011) Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173:326–333

    Article  CAS  Google Scholar 

  • Gupta SK, Sriwastav A, Ansari FA, Nasr M, Nema AK (2017) Phycoremediation: an eco-friendly algal technology for bioremediation and bioenergy production. In: Phytoremediation potential of bioenergy plants. Springer, Singapore, pp 431–456

    Chapter  Google Scholar 

  • Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. https://doi.org/10.1016/j.wri.2015.02.002

    Article  Google Scholar 

  • Holkar C, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366

    Article  CAS  Google Scholar 

  • Jais NM, Mohamed RM, Al-Gheethi AA, Hashim MK (2016) The dual roles of phycoremediation of wet market wastewater for nutrients and heavy metals removal and microalgae biomass production. Clean Techn Environ Policy 19(1):37–52. https://doi.org/10.1007/s10098-016-1235-7

    Article  CAS  Google Scholar 

  • Judd S, Al Momani FAO, Znad H, Al Ketife AMD (2016) The cost benefit of algal technology for combined CO2 mitigation and nutrient abatement. Renew Sust Energ Rev 71:379–387

    Article  Google Scholar 

  • Katiyar R, Kumar A, Gurjar BR (2017) Microalgae base biofuel: challenges and opportunities. Green Energy and Technology. https://doi.org/10.1007/978-981-10-3791-7_9

    Chapter  Google Scholar 

  • Kenny P, Flynn KJ (2017) Physiology limits commercial viable photoautotrophic production of microalgal biofuels. J Appl Phycol 29(6):2713–2727

    Article  CAS  Google Scholar 

  • Kong L, Hasanbeigi A, Price L (2016) Assessment of emerging energy-efficient technologies for the pulp and paper industry: a technical review. J Clean Prod 122:5–28

    Article  CAS  Google Scholar 

  • Kouhia M, Holmberg H, Ahtila P (2015) Microalgae-utilizing biorefinery concept for pulp and paper industry: converting secondary streams into value-added products. Algal Res 10:41–47

    Article  Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae–a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  • Llewellyn GT, Dorman F, Westland JL, Yoxtheimer D, Grieve P, Sowers T et al (2015) Evaluating a groundwater supply contamination incident attributed to Marcellus Shale gas development. Proc Natl Acad Sci 112(20):6325–6330

    Article  CAS  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419

    Article  CAS  Google Scholar 

  • Maltsev YI, Konovalenko TV, Barantsova IA, Maltseva IA, Maltseva KI (2017) Prospects of using algae in biofuel production. Regul Mech Biosyst 8(3):455–460. https://doi.org/10.15421/021770

    Article  Google Scholar 

  • Maznah WOW, Al-Fawwaz AT, Surif M (2012) Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia. J Environ Sci 24(8):1386–1393

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37:261–271

    Article  Google Scholar 

  • Mohan S, Muralimohan N, Vidhya K, Sivakumar C (2017) A case study on-textile industrial process, characterization and impacts of textile effluent. Indian J Sci Res 17(1):080–084

    CAS  Google Scholar 

  • Onyancha D, Mavura W, Ngila JC, Ongoma P, Chacha J (2008) Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J Hazard Mater 158(2–3):605–614. https://doi.org/10.1016/j.jhazmat.2008.02.043

    Article  CAS  Google Scholar 

  • Patel H, Vashi RT (2015) Characterization and treatment of textile wastewater. ScienceDirect E-books Freedom Collection, pp 1–174. https://doi.org/10.1016/C2014-0-02395-7

  • Patel A, Arora N, Pruthi V, Pruthi PA (2017) Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Prod 142:2858–2864. https://doi-org.libproxy.txstate.edu/10.1016/j.jclepro.2016.10.184

    Article  CAS  Google Scholar 

  • Rao P, Kumar RR, Raghavan BG, Subramanian VV, Sivasubramanian V (2011) Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA 37(1):7–14

    Article  CAS  Google Scholar 

  • Ravindran B, Gupta SK, Cho W, Kim JK, Lee SR, Jeong K, Lee DJ, Choi H (2016) Microalgae potential and multiple roles – current progress and future prospects – an overview. In: Sustainability. MDPI AG, pp 1–16

    Google Scholar 

  • Ravindran B, Kurade MB, Kabra AN, Jeon B, Gupta SK (2017) Recent advances and future prospects of microalgal lipid biotechnology. In: Algal biofuels: recent advances and future prospects. Springer International Publishing, pp 1–37

    Google Scholar 

  • Ribeiro RFL, Magalhaes S, Barbosa FAR, Nascentes CC, Campos LC, Moraes DC (2010) Evaluation of the potential of microalgae Microcystis novacekii in the removal of Pb2+ from an aqueous medium. J Hazard Mater 179:947–953

    Article  CAS  Google Scholar 

  • Richardson J, Outlaw J, Allison M (2010) The economics of microalgae oil. AgBioforum 13(2):119–130

    Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235

    Article  CAS  Google Scholar 

  • Sandau EE, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16(4):227–235

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava R, Chandra R (2017) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brébisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Schmitt D, Müller A, Csögör Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res 35(3):779–785

    Article  CAS  Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav 7(3):392–399

    Article  CAS  Google Scholar 

  • Shriwastav A, Gupta SK (2017) Key issues in pilot scale production, harvesting and processing of algal biomass for biofuels. In: Algal biofuels: recent advances and future prospects. Springer International Publishing, pp 247–258

    Google Scholar 

  • Singh S, Pradhan S, Rai LC (1998) Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory-grown Microcystis. Process Biochem 33(5):495–504

    Article  CAS  Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23:1115–1120

    Article  CAS  Google Scholar 

  • Smith VH, McBride RC (2015) Key ecological challenge in sustainable algal biofuels production. J Plankton Res 37(4):671–682

    Article  CAS  Google Scholar 

  • Soeprobowati T, Hariyati R (2017) The phycoremediation of textile wastewater discharge by Chlorella pyrenoidosa H. Chick, Arthrospira platensis Gomont, and Chaetoceros calcitrant (Paulson) H. Takano. Aquacult Aquar Conserv Legis 10:640–651

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(6):201–211

    Google Scholar 

  • Tahir S, Naseem R (2007) Removal of Cr(III) from tannery wastewater by adsorption onto bentonite clay. Sep Purif Technol 53(3):312–321. https://doi.org/10.1016/j.seppur.2006.08.008

    Article  CAS  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery – how to make sense? Renew Sust Energ Rev 47:295–307

    Article  CAS  Google Scholar 

  • Tüzün İ, Bayramoğlu G, Yalçın E, Başaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  Google Scholar 

  • US. Energy Information Administration – EIA – Independent statistics and analysis (2016) Retrieved April 23, 2018, from https://www.eia.gov

  • Usha MT, Chandra TS, Sarada R, Chauhan VS (2016) Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour Technol 214:856–860

    Article  CAS  Google Scholar 

  • Verma T, Ramteke PW, Garg SK (2008) Quality assessment of treated tannery wastewater with special emphasis on pathogenic E. coli detection through serotyping. Environ Monit Assess 145(1–3):243–249. https://doi.org/10.1007/s10661-007-0033-4

    Article  CAS  Google Scholar 

  • Wang TC, Weissman JC, Ramesh G, Varadarajan R, Benemann JR (1998) Heavy metal binding and removal by phormidium. Bull Environ Contam Toxicol 60:739–744

    Article  CAS  Google Scholar 

  • Wilson JM, VanBriesen JM (2012) Oil and gas produced water management and surface drinking water sources in Pennsylvania. Environ Pract 14(4):288–300

    Article  Google Scholar 

  • Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Letry, K.A., Castro, E.D., Gupta, S.K., Kumar, M. (2019). Industrial Wastewater-Based Algal Biorefineries: Application Constraints and Future Prospects. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_16

Download citation

Publish with us

Policies and ethics