Skip to main content

Commercial Potential of Phycoremediation of Wastewater: A Way Forward

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Wastewaters are a significant source of organic matter; however, they also contain some inorganic and non-biodegradable substances like oil, heavy metals, and other toxic chemicals. The methods which are conventionally used for the treatment primarily require huge land and energy and high operating costs. Phycoremediation is an alternative treatment approach which on one hand removes pollutants, like nitrate, phosphate, heavy metals, and other harmful chemicals; on the other hand, harvested microalgae can be used to produce various value-added products and energy. However, many conceptual, technological, and policy-related hurdles are to be crossed to make this technology economically viable and industrially sustainable. This chapter investigates the commercial potential of phycoremediation technology for wastewater treatment and its end products for various applications. This chapter also reviews various hindrances in the commercial application of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATS:

Algal Turf Scrubber

BGA:

Blue-green algae

EU:

European Union

GoI:

Govt. of India

HM:

Heavy metals

HRAP:

High-rate algal ponds

HTL:

Hydrothermal liquefaction

LED:

Light-emitting diode

MFA:

Monounsaturated fatty acids

NPs:

Nanoparticles

SFA:

Saturated fatty acids

SIO:

Scripps Institution of Oceanography

References

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  CAS  Google Scholar 

  • Aradhey A, India – Biofuels Annual (2016) USDA – Foreign Agricultural Service, Global Agricultural Information Network (GAIN), GAIN Report Number: IN6088. http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6–24-2016.pdf

  • Ariyant D, Handayani NA, Hadiyanto H (2012) Feasibility of using microalgae for biocement production through biocementation. J Bioproces Biotechniq 2:111

    Google Scholar 

  • Arunakumara KKIU, Xuecheng Z (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J Ocean Univ Chin 7:25–30

    Google Scholar 

  • Barros A, Goncalves A, Simoes M, Pires J (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Basystiuk YІ, Kostiv IY (2016) Getting hydrated magnesium chloride from magnesium chloride solutions of potassium sulfate fertilizers production. J Chem Eng Process Technol 7:291

    Google Scholar 

  • Becker EW (1983) Limitations of heavy metal removal from wastewater by means of algae. Water Res 17(4):459–466

    Article  CAS  Google Scholar 

  • Becker EW (1988) Micro-algae for human and animal consumption. In: Borowitzka MM, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, pp 222–256

    Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology. Cambridge University Press, New York, pp 250–275

    Google Scholar 

  • Bisen PS (2016) Nutritional therapy as a potent alternate to chemotherapy against cancer. J Cancer Sci Ther 8(6):168

    Article  Google Scholar 

  • Bolan NS, Wong L, Adriano DC (2004) Nutrient removal from farm effluents. Bioresour Technol 94:251–260

    Article  CAS  Google Scholar 

  • Brandão I, Longhi R (2016) Trans fatty acids, does exist safety dosage? J Obes Weight Loss Ther 6:312

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Budiyono B, Kusworo TD (2012) Microalgae for stabilizing biogas production from cassava starch wastewater. Int J Waste Resour 2:17–21

    Article  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  Google Scholar 

  • Chen C-Y, Yeh K-L, Aisyah R, Lee D-J, Chang J-S (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Biores Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Cheng K, Colman B (1974) Measurements of photorespiration in some microscopic algae. Planta 115:207–212

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chisti Y (2008) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26:351–352

    Article  CAS  Google Scholar 

  • Chisti Y (2012) Raceways-based production of algal crude oil. In: Posten C, Walter C (eds) Microalgal biotechnology: potential and production. de Gruyter, Berlin, pp 113–146

    Google Scholar 

  • Chollet R, Ogren W (1975) Regulation of photorespiration in C, and C4 species. Bot Rev 41:137–179

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45:7554–7560

    Article  CAS  Google Scholar 

  • Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665

    Article  CAS  Google Scholar 

  • Dassey A, Theegala C (2013) Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 128:241–245

    Article  CAS  Google Scholar 

  • Davis R, Aden A, Pienkos P (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • De La Noie J, Lalibert G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Conver Manag 52:163–170

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari IL, Gami B (2006) Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae. Curr Microbiol 53(2):148–157

    Article  CAS  Google Scholar 

  • El-Rafie HM, El-Rafie MH, Zahran MK (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96(2):403–410

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Ghareib MM, Abou-EL-Souod GW (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegrad 3:133

    Article  CAS  Google Scholar 

  • Energy (2016) DUSDo. National algal biofuels technology review. US Department of Energy, Office of Energy and Renewable Energy, Bioenergy Technologies Office

    Google Scholar 

  • Enright CT, Newkirk GF, Craigie JS, Castell JD (1986) Growth of juvenile Ostreaedulis L. fed Chaetoceros gracilis Schütt of the varied chemical composition. J Exp Mar Biol Ecol 96:15–26

    Article  CAS  Google Scholar 

  • Feldheim W (1972) Studies on use of microalgae in human nutrition. 1. Nutrition tests with algae containing diets in Thailand. Int J Vitam Nutr Res 42:600–606. Cited by Becker, E.W. 1988

    CAS  Google Scholar 

  • Fu W, Gudmundsson O, Feist AM, Herjolfsson G, Brynjolfsson S, Palsson BØ (2012) Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diode-based photobioreactor. J Biotechnol 161(3):242–249

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Article  CAS  Google Scholar 

  • González López CV, CerónGarcía MC, AciénFernández FG, Segovia Bustos C, Chisti Y, FernándezSevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  CAS  Google Scholar 

  • Gross U, Gross R (1978) Acceptance and product selection of food fortified with the microalga Scenedesmus. Archiv fur Hydrobiologie, Beihefte Ergebnisse der Limnologie 11:174–183

    Google Scholar 

  • Gross R, Gross U, Ramirez A, Cuadra K, Collazos C, Feldheim W (1978) Nutritional tests with green Scenedesmus with health and malnourished children. Archiv fur Hydrobiologie, Beihefte Ergebnisse der Limnologie 11:161–173

    Google Scholar 

  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011) Techno-economic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35:741–747

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    Article  CAS  Google Scholar 

  • Hong KS, Lee HM, Bae JS, Ha MG, Jin JS, Hong TE, Kim JP, Jeong ED (2011) Removal of heavy metal ions by using calcium carbonate extracted from starfish treated by protease and amylase. J Anal Sci Technol 2:75–82

    Article  CAS  Google Scholar 

  • Hossain ABMS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotech 4(3):250–254

    Article  CAS  Google Scholar 

  • Ichihara H, Motomura M, Matsumoto Y (2016) Negatively charged cell membranes-targeted highly selective chemotherapy with cationic hybrid liposomes against colorectal cancer in vitro and in vivo. J Carcinog Mutagen 7:267

    Google Scholar 

  • John J (2000) A self-sustainable remediation system for acidic mine voids. In: Proceedings of the 4th International Conference of diffuse pollution. Bangkok, pp. 506–511

    Google Scholar 

  • Kannan RR, Arumugam R, Ramya D, Manivannan K, Anantharaman P (2013) Green synthesis of silver nanoparticles using marine macroalgae Chaetomorpha linum. Appl Nanosci 3:229–233

    Article  CAS  Google Scholar 

  • Kent M, Browdy CL, Leffler JW (2011) Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture 319(3–4):363–368. https://doi.org/10.1016/j.aquaculture.06.048

    Article  Google Scholar 

  • Khan MA, Rao RAK, Ajmal M (2008) Heavy metal pollution and its control through nonconventional adsorbents (1998–2007): a review. J Int Environ Appl Sci 3(2):101–141

    Google Scholar 

  • Kosaric N, Nguyen HT, Bergougn MA (1974) Growth of Spirulina maxima algae in effluents from secondary wastewater treatment plants. Biotechnol Bioeng 16:881–896

    Article  CAS  Google Scholar 

  • Kumar SK, Ganesan K, Subba Rao PV (2007) Phycoremediation of heavy metals by the three-color forms of Kappaphycus alvarezii. J Hazard Mater 143:590–592

    Article  CAS  Google Scholar 

  • Kumar SK, Ganesan K, Subba Rao PV (2008) Heavy metal chelation by non-living biomass of three color forms of Kappaphycus alvarezii (Doty) Doty. J Appl Phycol 20:63–66

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  Google Scholar 

  • Lane J (2013) Algenol hits 9K gallons/acre mark for algae-to-ethanol process. Biofuels Digest

    Google Scholar 

  • Lee YK (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  • Liu X, Clarens AF, Colosi LM (2012) Algae biodiesel has potential despite inconclusive results to date. Bioresour Technol 104:803–806

    Article  CAS  Google Scholar 

  • Liu L, Guan LL, Wu W, Wang L (2016) A review of fatty acids and geneti characterization of safflower (Carthamus tinctorius L.) seed oil. Organic Chem Curr Res 5:–1

    Google Scholar 

  • Marínez-Córdova LR, Peña-Messina E (2005) Biotic communities and feeding habits of Litopenaeus vannamei (Boone 1931) and Litopenaeus stylirostris (Stimpson 1974) in monoculture and polyculture semi-intensive ponds. Aquac Res 36:1075–1084

    Article  Google Scholar 

  • Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold (111) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    CAS  Google Scholar 

  • Montoya-Gonzalez AH, Quijano-Vicente G, Morales-Maza A, Ortiz-Uribe N, Hernandez-Martinez R (2016) Isolation of Trichoderma Spp. from desert soil, biocontrol potential evaluation and liquid culture production of conidia using agricultural fertilizers. J Fertil Pestic 7:163

    Google Scholar 

  • Munoz R, Guieyssea B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Nguyen T, Mand A, Saleh MA (2016) Corchorus Olitorius Linn: a rich source of Ω3-fatty acids. Pharm Anal Acta 7:486

    Google Scholar 

  • Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Pastorino A, Bregni G, Damiani A, Grassi M, Puccini A, Fornarini G (2016) Cisplatin-related atrial fibrillation during PEB chemotherapy for testicular seminoma: a case report. J Health Med Inform 7:236

    Article  Google Scholar 

  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  Google Scholar 

  • Pérez-Rama M, Alonso JA, López CH, Vaamonde ET (2002) Cadmium removal by living cells of the marine microalga Tetraselmis suecica. Bioresour Technol 84:265–270

    Article  Google Scholar 

  • Piligaev AV, Sorokina KN, Bryanskaya AV, Peltek SE, Kolchanov NA, Parmon VN (2015) Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res 12:368–376

    Article  Google Scholar 

  • Pipes WO, Koutsoyannis SP (1962) Light-limited growth of Chlorella in continuous cultures. Appl Microbiol 10(1):1–5

    CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Rajathi AAF, Parthiban C, Kumar GV, Anantharaman P (2012) Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kutzing). Spectrochim Acta A Mol Biomol Spectrosc 99:166–173

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Kannan C, Annadurai G (2012) Green Synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int J Pharm Bio Sci 3(4):502–510

    CAS  Google Scholar 

  • Rauwel P, Kuunal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM advances. Mater Sci Eng 6827(49):1–9

    Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Shirvani T, Yan X-Y, Inderwildi OR, Edwards PP, King DA (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4:3773–3778

    Article  CAS  Google Scholar 

  • Silva M, Vieira LMM, Almeida AP, Silva AMS, Seca AML, Carmobarreto M, Neto AI, Pedro M, Pinto E, Kijjoa A (2013) Chemical study and biological activity evaluation of two Azorean macroalgae: Ulvarigida and Gelidium microdon. Oceanography 1:102

    Google Scholar 

  • Singaravelu G, Arokiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of mondisperse gold nanoparticles using marine alga, Sargassum wightti Greville. Colloids Surf B Biointerfaces 57(1):97–101

    Article  CAS  Google Scholar 

  • Singh J, Cu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(2):596–610

    Google Scholar 

  • Singh M, Manish K, Manikandan S, Chandrasekaran N, Mukherjee A, Kumaraguru AK (2014) Drug delivery system for controlled cancer therapy using physico-chemically stabilized bioconjugated gold nanoparticles synthesized from marine macroalgae Padina Gymnospora. J Nanomed Nanotechol S5:009

    Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Sudha SS, Rajamanikam K, Rengaramanujam J (2013) Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol 52:393–399

    Google Scholar 

  • Sukenik A, Shelef G (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26:142–147

    Article  CAS  Google Scholar 

  • Sulaymon AH, Moammed AA, Musawi TJ l (2013) Column biosorption of Lead, cadmium, copper, and arsenic ions onto algae. J Bioprocess Biotechniq 3:128

    Google Scholar 

  • Suryanarayanan TS, Johnson JA (2015) Fungal endosymbionts of macroalgae: need for enquiries into diversity and technological potential. Oceanography 2:119

    Google Scholar 

  • Tamulaitis G, Duchovskis P, Bliznikas Z et al (2005) High-power light-emitting diode based facility for plant cultivation. J Phys D Appl Phys 38(17):3182–3187

    Article  CAS  Google Scholar 

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979

    Article  CAS  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262

    Article  CAS  Google Scholar 

  • Thompson PA, Guo M, Harrison PJ (1993) The influence of irradiance on the biochemical composition of three phytoplankton species and their nutritional value for larvae of the Pacific oyster (Crassostrea gigas). Mar Biol 117:259–268

    Article  Google Scholar 

  • Tolbert NE (1974) Photorespiration. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, UK, pp 475–504

    Google Scholar 

  • Tomar V (2012) Raman spectroscopy of algae: a review. J Nanomed Nanotechnol 3:131

    Google Scholar 

  • Travis T (1993) The Haber-Bosch process—exemplar of 20th-century chemical industry. Chem Ind 15:581–585

    Google Scholar 

  • Tüzün Ä°, BayramoÄŸlu G, Yalçın E, BaÅŸaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77:85–92

    Article  CAS  Google Scholar 

  • Vanadate RD (2014) Dependent peroxidases in macroalgae: function, applications, and environmental impact. Oceanography 2:121

    Google Scholar 

  • Visconti GL, Mazzoleni L, Rusconi C, Grazioli V, Roda G, Manini G, Gamba V (2015) Determination by UPLC/MS-MS of coenzyme Q10 (CoQ10) in plasma of healthy volunteers before and after oral intake of food supplements containing CoQ10. J Anal Bioanal Tech S13:011

    Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewater from municipal wastewater. Appl Biochem Biotechnol 162:1174–1186

    Article  CAS  Google Scholar 

  • Wang C, Yu X, Lv H, Yang J (2013) Nitrogen and phosphorus removal from municipal wastewater by the green alga Chlorella sp. J Environ Biol 34:421–425

    Google Scholar 

  • Wilke A, Buchholz R, Bunke G (2006) Selective biosorption of heavy metals by algae. Environ Biotechnol 2(2):47–56

    Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid1 production for biofuel feedstock. J Environ Eng ASCE 135:1115–1122

    Article  CAS  Google Scholar 

  • Yousefzadi M, Rahimi Z, Ghafori V (2014) The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater Lett 137:1–4

    Article  CAS  Google Scholar 

  • Zamboni A, Murphy RJ, Woods J, Bezzo F, Shah N (2011) Biofuels carbon footprints: whole-systems optimisation for GHG emissions reduction. Bioresour Technol 102:7457–7465

    Article  CAS  Google Scholar 

  • Zelitch I (1971) Photosynthesis and photorespiration and plant productivity. Academic Press, New York

    Google Scholar 

  • Ziolkowska JR, Simon L (2014) Recent developments and prospects for algae-based fuels in the US. Renew Sust Energ Rev 29(8):47–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer Kumar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, S.K., Pandey, P., Yoo, K. (2019). Commercial Potential of Phycoremediation of Wastewater: A Way Forward. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_10

Download citation

Publish with us

Policies and ethics