Skip to main content

Scientific Background

  • Conference paper
  • First Online:

Abstract

This chapter covers the fundamental science behind GNSS-meteorology. Firstly, atmospheric water vapour and it’s role in meteorological and climate systems is covered. The Chapter then provides an overview of GNSS; how they fundamentally operate, how the atmosphere affects GNSS signals (and in particular, GNSS signal delays due to the neutral atmosphere), the conversion of atmospheric delays to integrated water vapour and the application of both signal delays and water vapour to modern meteorological observing systems.

Parts in this chapter are reprinted with kind permission from Jones (2010)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97, 15787–15801.

    Article  Google Scholar 

  • Blewitt, G. (1997). Basics of the GPS technique: observation equations. In B. Jonsson (Ed.), Geodetic applications of GPS (pp. 9–54). Helsinki: National Land Survey of Sweden.

    Google Scholar 

  • Colman, R. (2003). A comparison of climate feedbacks in general circulation models. Climate Dynamics, 20, 865–873.

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (Eds.). (2001). Climate change 2001: The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Jones, J. (2010). An assessment of the quality of GPS water vapour estimates and their use in operational meteorology and climate monitoring. PhD thesis, University of Nottingham. http://eprints.nottingham.ac.uk/11287/1/JJ_Thesis_Final.pdf

  • Kouba, J., & Heroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2), 12–28.

    Article  Google Scholar 

  • McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., & Garing, J. S. (1971). Optical properties of the atmosphere (p. 85). Report AFRCL-71-0279. Air Force Cambridge Research Laboratories.

    Google Scholar 

  • Philipona, R., Dürr, B., Ohmura, A., & Ruckstuhl, C. (2005). Anthropogenic greenhouse forcing and strong water vapour feedback increase temperature in Europe. Geophysical Research Letters, 32, L19809. https://doi.org/10.1029/2005GL023624.

    Article  Google Scholar 

  • Senior, C., & Mitchell, J. (1993). Carbon dioxide and climate. The impact of cloud parameterization. Journal of Climate, 6, 393–418.

    Article  Google Scholar 

  • Smith, E. K., & Weintraub, S. (1953). The constants in the equation for atmospheric refractive index at radio frequencies. Proceedings of the IRE, 41, 1035–1037.

    Article  Google Scholar 

  • Soden, B. J., & Held, I. M. (2006). An assessment of climate feedbacks in coupled ocean-atmosphere models. Journal of Climate, 19, 3354–3360.

    Article  Google Scholar 

  • Stainforth, D. A., Aina, T., Christensen, C., Collins, M., Faull, N., Frame, D. J., Kettleborough, J. A., Knight, S., Martin, A., Murphy, J. M., Piani, C., Sexton, D., Smith, L. A., Spicer, R. A., Thorpe, A. J., & Allen, M. R. (2005). Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433(403), 406.

    Google Scholar 

  • Thayer, G. D. (1974). An improved equation for the radio refractive index of air. Radio Science, 9, 803–807.

    Article  Google Scholar 

  • Thompson, A. R., Moran, J. M., & Swenson, G. W. (1986). Interferometry and synthesis in radio astronomy (720pp.). New York: Wiley.

    Google Scholar 

  • Unden, P., Rontu, L., Jarvinen, H., Lynch, P., Calvo, J., Cats, G., Cuhart, J., & Eerola, K. (2002). HIRLAM-5 scientific documentation. Technical report, HIRLAM-project, Norrkopping.

    Google Scholar 

  • Webb, M. J., Senior, C., Sexton, D., Ingram, W., Williams, K., Ringer, M., Mcavaney, B., Colman, R., Soden, B., Gudgel, R., Knutston, T., Emori, S., Ogura, T., Tsushima, Y., Andronova, N., Li, B., Bony, S., & Taylor, K. (2006). On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dynamics, 27, 17–38.

    Article  Google Scholar 

  • Yokohata, T., Emori, S., Nozawa, T., Tsushima, Y., Ogura, T., & Kimoto, M. (2005). A simple scheme for climate feedback analysis. Geophysical Research Letters, 32, L19703. https://doi.org/10.1029/2005GL023673.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jones, J. (2020). Scientific Background. In: Jones, J., et al. Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-13901-8_1

Download citation

Publish with us

Policies and ethics