Skip to main content

Organic and Carbon Gels Derived from Biosourced Polyphenols

  • Chapter
  • First Online:
Organic and Carbon Gels

Abstract

This chapter presents the most recent updates about sol-gel chemistry of phenolic molecules and the corresponding materials: xerogels, cryogels, and aerogels. The structure and properties of the latter, whether in the organic or carbon forms, are detailed and actual and potential applications are reported.

After an introduction about plant polyphenols in general, the focus is mainly given to condensed (flavonoid) tannins, shown to be the most relevant raw material for preparing resins, and hence gels. Lignin is considered as well, despite its lower reactivity and its less reproducible character, because of its industrial importance. Details about the nature and the properties of the carbon that can be obtained by pyrolysis of crosslinked polyphenols are also given.

Tannin-formaldehyde resins and mixed formulations associating resorcinol, soy protein, lignin, phenol, or surfactant are then discussed in terms of reactivity and ability to produce highly porous gels, depending on the experimental conditions of synthesis (dilution, pH, amount of crosslinker, etc.) and drying (subcritical, supercritical, or lyophilization). The porous structure of those materials is also explained in relation to gelation time and mechanical properties of the corresponding hydrogels. Derived carbons gels, including N-doped, formaldehyde-free materials, and activated carbon gels, are also considered.

Mechanical and thermal properties of organic gels, as well as electrochemical properties of carbon gels, are next introduced. Finally, recent developments including one-step microwave synthesis of xerogels, carbon xerogel microspheres having the characteristics of carbon molecular sieves, and elastic gels behaving as rubber springs with tunable elastic properties, all biosourced and tannin-based, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Babić, B. Kaluđerović, L. Vračar, N. Krstajić, Characterization of carbon cryogel synthesized by sol–gel polycondensation and freeze-drying. Carbon 42, 2617–2624 (2004). https://doi.org/10.1016/j.carbon.2004.05.046

    Article  CAS  Google Scholar 

  2. R.B. Durairaj, Resorcinol: Chemistry, Technology and Applications (Springer, Berlin, 2005)

    Google Scholar 

  3. D. Fairén-Jiménez, F. Carrasco-Marín, C. Moreno-Castilla, Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44, 2301–2307 (2006). https://doi.org/10.1016/j.carbon.2006.02.021

    Article  CAS  Google Scholar 

  4. J. Fricke, Aerogels: Proceedings of the First International Symposium, Würzburg, Fed. Rep. of Germany September 23–25, 1985 (Springer, Berlin, 1986)

    Book  Google Scholar 

  5. N. Job, R. Pirard, J. Marien, J.-P. Pirard, Porous carbon xerogels with texture tailored by pH control during sol–gel process. Carbon 42, 619–628 (2004). https://doi.org/10.1016/j.carbon.2003.12.072

    Article  CAS  Google Scholar 

  6. A. Léonard, N. Job, S. Blacher, et al., Suitability of convective air drying for the production of porous resorcinol–formaldehyde and carbon xerogels. Carbon 43, 1808–1811 (2005). https://doi.org/10.1016/j.carbon.2005.02.016

    Article  CAS  Google Scholar 

  7. R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989). https://doi.org/10.1007/BF01139044

    Article  CAS  Google Scholar 

  8. H. Tamon, H. Ishizaka, T. Yamamoto, T. Suzuki, Preparation of mesoporous carbon by freeze drying. Carbon 37, 2049–2055 (1999). https://doi.org/10.1016/S0008-6223(99)00089-5

    Article  CAS  Google Scholar 

  9. K.-N. Lee, H.-J. Lee, J.-H. Kim, Synthesis of phenolic/furfural gel microspheres in supercritical CO2. J. Supercrit. Fluids 17, 73–80 (2000). https://doi.org/10.1016/S0896-8446(99)00041-8

    Article  CAS  Google Scholar 

  10. R.W. Pekala, C.T. Alviso, X. Lu, et al., New organic aerogels based upon a phenolic-furfural reaction. J. Non-Cryst. Solids 188, 34–40 (1995). https://doi.org/10.1016/0022-3093(95)00027-5

    Article  CAS  Google Scholar 

  11. A. Szczurek, K. Jurewicz, G. Amaral-Labat, et al., Structure and electrochemical capacitance of carbon cryogels derived from phenol–formaldehyde resins. Carbon 48, 3874–3883 (2010). https://doi.org/10.1016/j.carbon.2010.06.053

    Article  CAS  Google Scholar 

  12. D. Wu, R. Fu, Z. Sun, Z. Yu, Low-density organic and carbon aerogels from the sol–gel polymerization of phenol with formaldehyde. J. Non-Cryst. Solids 351, 915–921 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.02.008

    Article  CAS  Google Scholar 

  13. W.-C. Li, A.-H. Lu, S.-C. Guo, Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 39, 1989–1994 (2001). https://doi.org/10.1016/S0008-6223(01)00029-X

    Article  CAS  Google Scholar 

  14. G. Amaral-Labat, A. Szczurek, V. Fierro, et al., in Turning adhesive formulations into valuable carbon gels. Proceedings of the International Conference Carbon’13. Rio de Janeiro (Brasil), 2013

    Google Scholar 

  15. E. Scopelitis, A. Pizzi, The chemistry and development of branched PRF wood adhesives of low resorcinol content. J. Appl. Polym. Sci. 47, 351–360 (1993). https://doi.org/10.1002/app.1993.070470215

    Article  CAS  Google Scholar 

  16. G. Amaral-Labat, A. Szczurek, V. Fierro, et al., “Blue glue”: a new precursor of carbon aerogels. Microporous Mesoporous Mater. 158, 272–280 (2012). https://doi.org/10.1016/j.micromeso.2012.03.051

    Article  CAS  Google Scholar 

  17. W.H.L. Dornette, M.E. Woodworth, Proposed amendments on revisions to the recommended system for the identification of the fire hazards of materials. NFPA No. 704M-1969. https://www.nfpa.org/Assets/files/AboutTheCodes/704/TCRF-1975-704M.pdf. Accessed 27 May 2018

  18. R.V. Barbehenn, C.P. Constabel, Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565 (2011). https://doi.org/10.1016/j.phytochem.2011.01.040

    Article  CAS  Google Scholar 

  19. G.G. Gross, Biosynthesis of hydrolyzable tannins, in Comprehensive Natural Products Chemistry: Carbohydrates and Their Derivatives Including Tannins, Cellulose and Related Lignings, ed. by S.D. Barton, K. Nakanishi, O. Meth-Cohn (Pergamon, Oxford, 1999), pp. 799–826

    Chapter  Google Scholar 

  20. K. Khanbabaee, R.T. van, Tannins: classification and definition. Nat. Prod. Rep. 18, 641–649 (2001). https://doi.org/10.1039/B101061L

    Article  CAS  Google Scholar 

  21. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, et al., Nitrogen-doped carbon materials produced from hydrothermally treated tannin. Carbon 50, 5411–5420 (2012). https://doi.org/10.1016/j.carbon.2012.07.027

    Article  CAS  Google Scholar 

  22. A. Pizzi, Tannin-based wood adhesives, in Wood Adhesives: Chemistry and Technology, 1st edn. (CRC Press, New York, 1983), pp. 177–246

    Google Scholar 

  23. A. Pizzi, H. Pasch, A. Celzard, A. Szczurek, Oligomers distribution at the gel point of tannin–formaldehyde thermosetting adhesives for wood panels. J. Adhes. Sci. Technol. 27, 2094–2102 (2013). https://doi.org/10.1080/01694243.2012.697669

    Article  CAS  Google Scholar 

  24. C. Lacoste, M.C. Basso, A. Pizzi, et al., Pine tannin-based rigid foams: mechanical and thermal properties. Ind. Crop. Prod. 43, 245–250 (2013). https://doi.org/10.1016/j.indcrop.2012.07.039

    Article  CAS  Google Scholar 

  25. A. Pizzi, K.L. Mittal, Handbook of Adhesive Technology, Revised and Expanded (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  26. C. Lacoste, M.C. Basso, A. Pizzi, et al., Bioresourced pine tannin/furanic foams with glyoxal and glutaraldehyde. Ind. Crop. Prod. 45, 401–405 (2013). https://doi.org/10.1016/j.indcrop.2012.12.032

    Article  CAS  Google Scholar 

  27. X. Li, A. Pizzi, X. Zhou, et al., Formaldehyde-free prorobitenidin/profi setinidin tannin/furanic foams based on alternative aldehydes: glyoxal and glutaraldehyde. J. Renew. Mater. 3, 142–150 (2015). https://doi.org/10.7569/JRM.2014.634117

    Article  CAS  Google Scholar 

  28. A. Szczurek, V. Fierro, A. Pizzi, et al., A new method for preparing tannin-based foams. Ind. Crop. Prod. 54, 40–53 (2014). https://doi.org/10.1016/j.indcrop.2014.01.012

    Article  CAS  Google Scholar 

  29. A. Szczurek, V. Fierro, A. Pizzi, et al., Corrigendum to “A new method for preparing tannin-based foams” [Ind. Crops Prod. 54, 40–53]. Ind. Crop. Prod. 67, 510 (2015). https://doi.org/10.1016/j.indcrop.2015.02.030

    Article  Google Scholar 

  30. M.C. Basso, X. Li, V. Fierro, et al., Green, formaldehyde-free, foams for thermal insulation. Adv. Mater. Lett. 2, 378–382 (2011). https://doi.org/10.5185/amlett.2011.4254

    Article  CAS  Google Scholar 

  31. A. Szczurek, V. Fierro, M. Thébault, et al., Structure and properties of poly(furfuryl alcohol)-tannin polyHIPEs. Eur. Polym. J. 78, 195–212 (2016). https://doi.org/10.1016/j.eurpolymj.2016.03.037

    Article  CAS  Google Scholar 

  32. A. Pizzi, G. Tondi, H. Pasch, A. Celzard, Matrix-assisted laser desorption/ionization time-of-flight structure determination of complex thermoset networks: polyflavonoid tannin–furanic rigid foams. J. Appl. Polym. Sci. 110, 1451–1456 (2008). https://doi.org/10.1002/app.28545

    Article  CAS  Google Scholar 

  33. X. Li, M.C. Basso, V. Fierro, et al., Chemical modification of tannin/furanic rigid foams by isocyanates and polyurethanes. Maderas Cienc. Tecnol. 14, 257–265 (2012). https://doi.org/10.4067/S0718-221X2012005000001

    Article  CAS  Google Scholar 

  34. X. Li, A. Pizzi, M. Cangemi, et al., Insulation rigid and elastic foams based on albumin. Ind. Crop. Prod. 37, 149–154 (2012). https://doi.org/10.1016/j.indcrop.2011.11.030

    Article  CAS  Google Scholar 

  35. X. Li, A. Pizzi, M. Cangemi, et al., Flexible natural tannin-based and protein-based biosourced foams. Ind. Crop. Prod. 37, 389–393 (2012). https://doi.org/10.1016/j.indcrop.2011.12.037

    Article  CAS  Google Scholar 

  36. F. Braghiroli, V. Fierro, A. Pizzi, et al., Reaction of condensed tannins with ammonia. Ind. Crop. Prod. 44, 330–335 (2013). https://doi.org/10.1016/j.indcrop.2012.11.024

    Article  CAS  Google Scholar 

  37. X. Li, H.A. Essawy, A. Pizzi, et al., Modification of tannin based rigid foams using oligomers of a hyperbranched poly(amine-ester). J. Polym. Res. 19, 21 (2012). https://doi.org/10.1007/s10965-012-0021-4

    Article  CAS  Google Scholar 

  38. M.C. Basso, S. Giovando, A. Pizzi, et al., Flexible-elastic copolymerized polyurethane-tannin foams. J. Appl. Polym. Sci. 131, 40499–1-40499–6 (2014). https://doi.org/10.1002/app.40499

    Article  CAS  Google Scholar 

  39. M. Basso, A. Pizzi, C. Lacoste, et al., MALDI-TOF and 13C NMR analysis of tannin–furanic–polyurethane foams adapted for industrial continuous lines application. Polymers 6, 2985–3004 (2014). https://doi.org/10.3390/polym6122985

    Article  CAS  Google Scholar 

  40. C. Lacoste, M.C. Basso, A. Pizzi, et al., Natural albumin/tannin cellular foams. Ind. Crop. Prod. 73, 41–48 (2015). https://doi.org/10.1016/j.indcrop.2015.03.087

    Article  CAS  Google Scholar 

  41. F.-J. Santiago-Medina, A. Pizzi, M.C. Basso, et al., Polycondensation resins by flavonoid tannins reaction with amines. Polymers 9, 37 (2017). https://doi.org/10.3390/polym9020037

    Article  CAS  Google Scholar 

  42. A. Arbenz, L. Avérous, Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chem. 17, 2626–2646 (2015). https://doi.org/10.1039/C5GC00282F

    Article  CAS  Google Scholar 

  43. A. Pizzi, H. Pasch, A. Celzard, A. Szczurek, Oligomer distribution at the gel point of tannin-resorcinol-formaldehyde cold-set wood adhesives. J. Adhes. Sci. Technol. 26, 79–88 (2012). https://doi.org/10.1163/016942411X569309

    Article  CAS  Google Scholar 

  44. A. Celzard, V. Fierro, A. Pizzi, W. Zhao, Multifunctional porous solids derived from tannins. J. Phys. Conf. Ser. 416, 012023 (2013). https://doi.org/10.1088/1742-6596/416/1/012023

    Article  CAS  Google Scholar 

  45. A. Celzard, A. Szczurek, P. Jana, et al., Latest progresses in the preparation of tannin-based cellular solids. J. Cell. Plast. 51, 89–102 (2014). https://doi.org/10.1177/0021955X14538273

    Article  CAS  Google Scholar 

  46. G. Tondi, W. Zhao, A. Pizzi, et al., Tannin-based rigid foams: a survey of chemical and physical properties. Bioresour. Technol. 100, 5162–5169 (2009). https://doi.org/10.1016/j.biortech.2009.05.055

    Article  CAS  Google Scholar 

  47. W. Zhao, A. Pizzi, V. Fierro, et al., Effect of composition and processing parameters on the characteristics of tannin-based rigid foams. Part I: cell structure. Mater. Chem. Phys. 122, 175–182 (2010). https://doi.org/10.1016/j.matchemphys.2010.02.062

    Article  CAS  Google Scholar 

  48. W. Zhao, V. Fierro, A. Pizzi, et al., Effect of composition and processing parameters on the characteristics of tannin-based rigid foams. Part II: physical properties. Mater. Chem. Phys. 123, 210–217 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.084

    Article  CAS  Google Scholar 

  49. A. Celzard, W. Zhao, A. Pizzi, V. Fierro, Mechanical properties of tannin-based rigid foams undergoing compression. Mater. Sci. Eng. A 527, 4438–4446 (2010). https://doi.org/10.1016/j.msea.2010.03.091

    Article  CAS  Google Scholar 

  50. A. Celzard, V. Fierro, G. Amaral-Labat, et al., Flammability assessment of tannin-based cellular materials. Polym. Degrad. Stab. 96, 477–482 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.01.014

    Article  CAS  Google Scholar 

  51. X. Zhou, A. Pizzi, A. Sauget, et al., Lightweight tannin foam/composites sandwich panels and the coldset tannin adhesive to assemble them. Ind. Crop. Prod. 43, 255–260 (2013). https://doi.org/10.1016/j.indcrop.2012.07.020

    Article  CAS  Google Scholar 

  52. X. Li, A. Pizzi, C. Lacoste, et al., Physical properties of tannin/furanic resin foamed with different blowing agents. Bioresources 8, 743–752 (2012). https://doi.org/10.15376/biores.8.1.743-752

    Article  Google Scholar 

  53. X. Li, V.K. Srivastava, A. Pizzi, et al., Nanotube-reinforced tannin/furanic rigid foams. Ind. Crop. Prod. 43, 636–639 (2013). https://doi.org/10.1016/j.indcrop.2012.08.008

    Article  CAS  Google Scholar 

  54. M.C. Basso, S. Giovando, A. Pizzi, et al., Tannin/furanic foams without blowing agents and formaldehyde. Ind. Crop. Prod. 49, 17–22 (2013). https://doi.org/10.1016/j.indcrop.2013.04.043

    Article  CAS  Google Scholar 

  55. M.C. Basso, A. Pizzi, A. Celzard, Dynamic monitoring of tannin-based foam preparation: effects of surfactant. Bioresources 8, 5807–5816 (2013). https://doi.org/10.15376/biores.8.4.5807-5816

    Article  Google Scholar 

  56. M.C. Basso, A. Pizzi, A. Celzard, Influence of formulation on the dynamics of preparation of tannin-based foams. Ind. Crop. Prod. 51, 396–400 (2013). https://doi.org/10.1016/j.indcrop.2013.09.013

    Article  CAS  Google Scholar 

  57. M.C. Basso, A. Pizzi, A. Celzard, Dynamic foaming behaviour of polyurethane vs tannin/furanic foams. J. Renew. Mater. 1, 273–278 (2013). https://doi.org/10.7569/JRM.2013.634125

    Article  CAS  Google Scholar 

  58. C. Lacoste, A. Pizzi, M.-C. Basso, et al., Pinus pinaster tannin/furanic foams: part I. Formulation. Ind. Crop. Prod. 52, 450–456 (2014). https://doi.org/10.1016/j.indcrop.2013.10.044

    Article  CAS  Google Scholar 

  59. A. Martinez de Yuso, M.C. Lagel, A. Pizzi, et al., Structure and properties of rigid foams derived from quebracho tannin. Mater. Des. 63, 208–212 (2014). https://doi.org/10.1016/j.matdes.2014.05.072

    Article  CAS  Google Scholar 

  60. M.C. Basso, S. Giovando, A. Pizzi, et al., Alkaline tannin rigid foams. J. Renew. Mater. 2, 182–185 (2014). https://doi.org/10.7569/JRM.2013.634137

    Article  CAS  Google Scholar 

  61. C. Lacoste, A. Pizzi, M.-P. Laborie, A. Celzard, Pinus pinaster tannin/furanic foams: part II. Physical properties. Ind. Crop. Prod. 61, 531–536 (2014). https://doi.org/10.1016/j.indcrop.2014.04.034

    Article  CAS  Google Scholar 

  62. C. Lacoste, M.-C. Basso, A. Pizzi, et al., Pine (P. pinaster) and quebracho (S. lorentzii) tannin-based foams as green acoustic absorbers. Ind. Crop. Prod. 67, 70–73 (2015). https://doi.org/10.1016/j.indcrop.2014.12.018

    Article  CAS  Google Scholar 

  63. C. Lacoste, M. Čop, K. Kemppainen, et al., Biobased foams from condensed tannin extracts from Norway spruce (Picea abies) bark. Ind. Crop. Prod. 73, 144–153 (2015). https://doi.org/10.1016/j.indcrop.2015.03.089

    Article  CAS  Google Scholar 

  64. M.C. Basso, M.-C. Lagel, A. Pizzi, et al., First tools for tannin-furanic foams design. Bioresources 10, 5233–5241 (2015). https://doi.org/10.15376/biores.10.3.5233-5241

    Article  CAS  Google Scholar 

  65. G. Rangel, H. Chapuis, M.-C. Basso, et al., Improving water repellence and friability of tannin-furanic foams by oil-grafted flavonoid tannins. Bioresources 11, 7754–7768 (2016). https://doi.org/10.15376/biores.11.3.7754-7768

    Article  CAS  Google Scholar 

  66. C. Delgado-Sanchez, M. Letellier, V. Fierro, et al., Hydrophobisation of tannin-based foams by covalent grafting of silanes. Ind. Crop. Prod. 92, 116 (2016). https://doi.org/10.1016/j.indcrop.2016.08.002

    Article  CAS  Google Scholar 

  67. C. Delgado-Sánchez, V. Fierro, S. Li, et al., Stability analysis of tannin-based foams using multiple light-scattering measurements. Eur. Polym. J. 87, 318–330 (2017). https://doi.org/10.1016/j.eurpolymj.2016.12.036

    Article  CAS  Google Scholar 

  68. C. Delgado-Sánchez, F. Santiago-Medina, V. Fierro, et al., Optimisation of “green” tannin-furanic foams for thermal insulation by experimental design. Mater. Des. 139, 7–15 (2018). https://doi.org/10.1016/j.matdes.2017.10.064

    Article  CAS  Google Scholar 

  69. F.J. Santiago-Medina, C. Delgado-Sánchez, M.C. Basso, et al., Mechanically blown wall-projected tannin-based foams. Ind. Crop. Prod. 113, 316–323 (2018). https://doi.org/10.1016/j.indcrop.2018.01.049

    Article  CAS  Google Scholar 

  70. M.C. Lagel, Y.A.M. de, A. Pizzi, et al., Développement et caractérisation de mousses à base de tanins de Quebracho. Mater. Tech. 102, 104 (2014). https://doi.org/10.1051/mattech/2014007

    Article  CAS  Google Scholar 

  71. G. Tondi, V. Fierro, A. Pizzi, A. Celzard, Tannin-based carbon foams. Carbon 47, 1480–1492 (2009). https://doi.org/10.1016/j.carbon.2009.01.041

    Article  CAS  Google Scholar 

  72. G. Tondi, V. Fierro, A. Pizzi, A. Celzard, Erratum to ‘Tannin-based carbon foam’ [Carbon 47 (2009) 1480–1492]. Carbon 47, 2761 (2009). https://doi.org/10.1016/j.carbon.2009.06.020

    Article  CAS  Google Scholar 

  73. G. Tondi, S. Blacher, A. Léonard, et al., X-ray microtomography studies of tannin-derived organic and carbon foams. Microsc. Microanal. 15, 384–394 (2009). https://doi.org/10.1017/S1431927609990444

    Article  CAS  Google Scholar 

  74. A. Tony Pizzi, A. Celzard, V. Fierro, G. Tondi, Chemistry, morphology, microtomography and activation of natural and carbonized tannin foams for different applications. Macromol. Symp. 313-314, 100–111 (2012). https://doi.org/10.1002/masy.201250311

    Article  CAS  Google Scholar 

  75. X. Li, M.C. Basso, F.L. Braghiroli, et al., Tailoring the structure of cellular vitreous carbon foams. Carbon 50, 2026–2036 (2012). https://doi.org/10.1016/j.carbon.2012.01.004

    Article  CAS  Google Scholar 

  76. A. Celzard, G. Tondi, D. Lacroix, et al., Radiative properties of tannin-based, glasslike, carbon foams. Carbon 50, 4102–4113 (2012). https://doi.org/10.1016/j.carbon.2012.04.058

    Article  CAS  Google Scholar 

  77. G. Amaral-Labat, M. Sahimi, A. Pizzi, et al., Mechanical properties of heat-treated organic foams. Phys. Rev. E 87, 032156 (2013). https://doi.org/10.1103/PhysRevE.87.032156

    Article  CAS  Google Scholar 

  78. G. Amaral-Labat, E. Gourdon, V. Fierro, et al., Acoustic properties of cellular vitreous carbon foams. Carbon 58, 76–86 (2013). https://doi.org/10.1016/j.carbon.2013.02.033

    Article  CAS  Google Scholar 

  79. P. Jana, V. Fierro, A. Pizzi, A. Celzard, Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage. Biomass Bioenergy 67, 312–318 (2014). https://doi.org/10.1016/j.biombioe.2014.04.031

    Article  CAS  Google Scholar 

  80. M. Letellier, V. Fierro, A. Pizzi, A. Celzard, Tortuosity studies of cellular vitreous carbon foams. Carbon 80, 193–202 (2014). https://doi.org/10.1016/j.carbon.2014.08.056

    Article  CAS  Google Scholar 

  81. P. Jana, V. Fierro, A. Pizzi, A. Celzard, Thermal conductivity improvement of composite carbon foams based on tannin-based disordered carbon matrix and graphite fillers. Mater. Des. 83, 635–643 (2015). https://doi.org/10.1016/j.matdes.2015.06.057

    Article  CAS  Google Scholar 

  82. M. Letellier, A. Szczurek, M.-C. Basso, et al., Preparation and structural characterisation of model cellular vitreous carbon foams. Carbon 112, 208–218 (2017). https://doi.org/10.1016/j.carbon.2016.11.017

    Article  CAS  Google Scholar 

  83. M. Letellier, J. Macutkevic, D. Bychanok, et al., Modelling the physical properties of glasslike carbon foams. J. Phys. Conf. Ser. 879, 012014 (2017). https://doi.org/10.1088/1742-6596/879/1/012014

    Article  CAS  Google Scholar 

  84. M. Letellier, C. Delgado-Sanchez, M. Khelifa, et al., Mechanical properties of model vitreous carbon foams. Carbon 116, 562–571 (2017). https://doi.org/10.1016/j.carbon.2017.02.020

    Article  CAS  Google Scholar 

  85. M. Letellier, S. Ghaffari Mosanenzadeh, H. Naguib, et al., Acoustic properties of model cellular vitreous carbon foams. Carbon 119, 241–250 (2017). https://doi.org/10.1016/j.carbon.2017.04.049

    Article  CAS  Google Scholar 

  86. G. Amaral-Labat, C. Zollfrank, A. Ortona, et al., Structure and oxidation resistance of micro-cellular Si–SiC foams derived from natural resins. Ceram. Int. 39, 1841–1851 (2013). https://doi.org/10.1016/j.ceramint.2012.08.032

    Article  CAS  Google Scholar 

  87. A. Pizzi, C. Zollfrank, X. Li, et al., A SEM record of proteins-derived microcellular silicon carbide foams. J. Renew. Mater. 2, 230–234 (2014). https://doi.org/10.7569/JRM.2014.634114

    Article  CAS  Google Scholar 

  88. A. Szczurek, V. Fierro, A. Pizzi, A. Celzard, Mayonnaise, whipped cream and meringue, a new carbon cuisine. Carbon 58, 245–248 (2013). https://doi.org/10.1016/j.carbon.2013.02.056

    Article  CAS  Google Scholar 

  89. A. Szczurek, V. Fierro, A. Pizzi, et al., Carbon meringues derived from flavonoid tannins. Carbon 65, 214–227 (2013). https://doi.org/10.1016/j.carbon.2013.08.017

    Article  CAS  Google Scholar 

  90. A. Szczurek, V. Fierro, A. Pizzi, A. Celzard, Emulsion-templated porous carbon monoliths derived from tannins. Carbon 74, 352–362 (2014). https://doi.org/10.1016/j.carbon.2014.03.047

    Article  CAS  Google Scholar 

  91. A. Szczurek, A. Martinez de Yuso, V. Fierro, et al., Tannin-based monoliths from emulsion-templating. Mater. Des. 79, 115–126 (2015). https://doi.org/10.1016/j.matdes.2015.04.020

    Article  CAS  Google Scholar 

  92. W. Zhao, V. Fierro, A. Pizzi, A. Celzard, Bimodal cellular activated carbons derived from tannins. J. Mater. Sci. 45, 5778–5785 (2010). https://doi.org/10.1007/s10853-010-4651-9

    Article  CAS  Google Scholar 

  93. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, et al., Kinetics of the hydrothermal treatment of tannin for producing carbonaceous microspheres. Bioresour. Technol. 151, 271–277 (2014). https://doi.org/10.1016/j.biortech.2013.10.045

    Article  CAS  Google Scholar 

  94. F.L. Braghiroli, V. Fierro, A. Szczurek, et al., Electrochemical performances of hydrothermal tannin-based carbons doped with nitrogen. Ind. Crop. Prod. 70, 332–340 (2015). https://doi.org/10.1016/j.indcrop.2015.03.046

    Article  CAS  Google Scholar 

  95. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, et al., High surface – highly N-doped carbons from hydrothermally treated tannin. Ind. Crop. Prod. 66, 282–290 (2015). https://doi.org/10.1016/j.indcrop.2014.11.022

    Article  CAS  Google Scholar 

  96. F.L. Braghiroli, V. Fierro, J. Parmentier, et al., Hydrothermal carbons produced from tannin by modification of the reaction medium: addition of H+ and Ag+. Ind. Crop. Prod. 77, 364–374 (2015). https://doi.org/10.1016/j.indcrop.2015.09.010

    Article  CAS  Google Scholar 

  97. S. Schaefer, A. Ramirez, R. Mallada, et al., Easy preparation of tannin-based Ag catalysts for ethylene epoxidation. ChemistrySelect 2, 8509–8516 (2017). https://doi.org/10.1002/slct.201701548

    Article  CAS  Google Scholar 

  98. F.L. Braghiroli, V. Fierro, A. Szczurek, et al., Hydrothermal treatment of tannin: a route to porous metal oxides and metal/carbon hybrid materials. Inorganics 5, 7 (2017). https://doi.org/10.3390/inorganics5010007

    Article  CAS  Google Scholar 

  99. S. Schlienger, A.-L. Graff, A. Celzard, J. Parmentier, Direct synthesis of ordered mesoporous polymer and carbon materials by a biosourced precursor. Green Chem. 14, 313–316 (2012). https://doi.org/10.1039/C2GC16160E

    Article  CAS  Google Scholar 

  100. F.L. Braghiroli, V. Fierro, J. Parmentier, et al., Easy and eco-friendly synthesis of ordered mesoporous carbons by self-assembly of tannin with a block copolymer. Green Chem. 18, 3265–3271 (2016). https://doi.org/10.1039/C5GC02788H

    Article  CAS  Google Scholar 

  101. D. Bychanok, S. Li, G. Gorokhov, et al., Fully carbon metasurface: absorbing coating in microwaves. J. Appl. Phys. 121, 165103–1–165103–9 (2017). https://doi.org/10.1063/1.4982232

    Article  CAS  Google Scholar 

  102. A. Szczurek, G. Amaral-Labat, V. Fierro, et al., New families of carbon gels based on natural resources. J. Phys. Conf. Ser. 416, 012022 (2013). https://doi.org/10.1088/1742-6596/416/1/012022

    Article  CAS  Google Scholar 

  103. A. Pizzi, H.O. Scharfetter, The chemistry and development of tannin-based adhesives for exterior plywood. J. Appl. Polym. Sci. 22, 1745–1761 (1978). https://doi.org/10.1002/app.1978.070220623

    Article  CAS  Google Scholar 

  104. M.C. Lagel, A. Pizzi, S. Giovando, A. Celzard, Development and characterisation of phenolic foams with phenol-formaldehyde-chestnut tannins resin. J. Renew. Mater. 2, 220–229 (2014). https://doi.org/10.7569/JRM.2014.634113

    Article  CAS  Google Scholar 

  105. W.-J. Liu, H. Jiang, H.-Q. Yu, Thermochemical conversion of lignin to functional materials: a review and future directions. Green Chem. 17, 4888–4907 (2015). https://doi.org/10.1039/C5GC01054C

    Article  CAS  Google Scholar 

  106. M.N. Mohamad Ibrahim, N. Zakaria, C.S. Sipaut, et al., Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde resin production. Carbohydr. Polym. 86, 112–119 (2011). https://doi.org/10.1016/j.carbpol.2011.04.018

    Article  CAS  Google Scholar 

  107. D. Saidane, J.-C. Barbe, M. Birot, H. Deleuze, Preparation of functionalized Kraft lignin beads. J. Appl. Polym. Sci. 116, 1184–1189 (2010). https://doi.org/10.1002/app.31659

    Article  CAS  Google Scholar 

  108. G. Tondi, A. Pizzi, H. Pasch, A. Celzard, Structure degradation, conservation and rearrangement in the carbonisation of polyflavonoid tannin/furanic rigid foams—a MALDI-TOF investigation. Polym. Degrad. Stab. 93, 968–975 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.01.024

    Article  CAS  Google Scholar 

  109. G. Tondi, A. Pizzi, H. Pasch, et al., MALDI-ToF investigation of furanic polymer foams before and after carbonization: aromatic rearrangement and surviving furanic structures. Eur. Polym. J. 44, 2938–2943 (2008). https://doi.org/10.1016/j.eurpolymj.2008.06.029

    Article  CAS  Google Scholar 

  110. G.M. Jenkins, K. Kawamura, Structure of glassy carbon. Nature 231, 175–176 (1971). https://doi.org/10.1038/231175a0

    Article  CAS  Google Scholar 

  111. M. Shiraishi, in Tanso Zairyou Nyuumon, ed. by M. Inagaki (Kagakugizyutusha, Tokyo, 1984), p. 29

    Google Scholar 

  112. K. Jurkiewicz, Ł. Hawełek, K. Balin, et al., Conversion of natural tannin to hydrothermal and graphene-like carbons studied by wide-angle X-ray scattering. J. Phys. Chem. A 119, 8692–8701 (2015). https://doi.org/10.1021/acs.jpca.5b02407

    Article  CAS  Google Scholar 

  113. C. Hu, S. Sedghi, A. Silvestre-Albero, et al., Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon 85, 147–158 (2015). https://doi.org/10.1016/j.carbon.2014.12.098

    Article  CAS  Google Scholar 

  114. A. Szczurek, G. Amaral-Labat, V. Fierro, et al., The use of tannin to prepare carbon gels. Part I: carbon aerogels. Carbon 49, 2773–2784 (2011). https://doi.org/10.1016/j.carbon.2011.03.007

    Article  CAS  Google Scholar 

  115. U. Szeluga, S. Pusz, B. Kumanek, et al., Influence of unique structure of glassy carbon on morphology and properties of its epoxy-based binary composites and hybrid composites with carbon nanotubes. Compos. Sci. Technol. 134, 72–80 (2016). https://doi.org/10.1016/j.compscitech.2016.08.004

    Article  CAS  Google Scholar 

  116. M. Inagaki, New Carbons - Control of Structure and Functions, 1st edn. (Elsevier Science, Oxford, 2000)

    Google Scholar 

  117. M.I. Nathan, J.E. Smith, K.N. Tu, Raman spectra of glassy carbon. J. Appl. Phys. 45, 2370–2370 (1974). https://doi.org/10.1063/1.1663599

    Article  CAS  Google Scholar 

  118. A. Szczurek, A. Ortona, L. Ferrari, et al., Carbon periodic cellular architectures. Carbon 88, 70–85 (2015). https://doi.org/10.1016/j.carbon.2015.02.069

    Article  CAS  Google Scholar 

  119. V.N. Tsaneva, W. Kwapinski, X. Teng, B.A. Glowacki, Assessment of the structural evolution of carbons from microwave plasma natural gas reforming and biomass pyrolysis using Raman spectroscopy. Carbon 80, 617–628 (2014). https://doi.org/10.1016/j.carbon.2014.09.005

    Article  CAS  Google Scholar 

  120. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  121. G. Amaral-Labat, A. Szczurek, V. Fierro, et al., Pore structure and electrochemical performances of tannin-based carbon cryogels. Biomass Bioenergy 39, 274–282 (2012). https://doi.org/10.1016/j.biombioe.2012.01.019

    Article  CAS  Google Scholar 

  122. F.L. Braghiroli, V. Fierro, A. Szczurek, et al., Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon 90, 63–74 (2015). https://doi.org/10.1016/j.carbon.2015.03.038

    Article  CAS  Google Scholar 

  123. A. Sánchez-Sánchez, M.T. Izquierdo, J. Ghanbaja, et al., Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes. J. Power Sources 344, 15–24 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.099

    Article  CAS  Google Scholar 

  124. V. Fierro, A. Sanchez-Sanchez, A. Celzard, Tannins as precursors of supercapacitor electrodes, in Sustainable Energy Technologies, ed. by E. Rincón-Mejía, A. de las Heras (CRC Press, Taylor & Francis, Boca Raton, 2017), pp. 201–228

    Google Scholar 

  125. L. Soukup, I. Gregora, L. Jastrabik, A. Koňáková, Raman spectra and electrical conductivity of glassy carbon. Mater. Sci. Eng. B 11, 355–357 (1992). https://doi.org/10.1016/0921-5107(92)90240-A

    Article  Google Scholar 

  126. P.P. Kuzhir, A.G. Paddubskaya, M.V. Shuba, et al., Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites. J. Nanophotonics 6, 061715 (2012). https://doi.org/10.1117/1.JNP.6.061715

    Article  CAS  Google Scholar 

  127. M. Letellier, J. Macutkevic, A. Paddubskaya, et al., Tannin-based carbon foams for electromagnetic applications. IEEE Trans. Electromagn. Compat. 57, 989–995 (2015). https://doi.org/10.1109/TEMC.2015.2430370

    Article  Google Scholar 

  128. M. Letellier, J. Macutkevic, A. Paddubskaya, et al., Microwave dielectric properties of tannin-based carbon foams. Ferroelectrics 479, 119–126 (2015). https://doi.org/10.1080/00150193.2015.1012036

    Article  CAS  Google Scholar 

  129. M. Letellier, J. Macutkevic, P. Kuzhir, et al., Electromagnetic properties of model vitreous carbon foams. Carbon 122, 217–227 (2017). https://doi.org/10.1016/j.carbon.2017.06.080

    Article  CAS  Google Scholar 

  130. M. Seredych, A. Szczurek, V. Fierro, et al., Electrochemical reduction of oxygen on hydrophobic ultramicroporous polyHIPE carbon. ACS Catal. 6, 5618–5628 (2016). https://doi.org/10.1021/acscatal.6b01497

    Article  CAS  Google Scholar 

  131. J. Encalada, K. Savaram, N.A. Travlou, et al., Combined effect of porosity and surface chemistry on the electrochemical reduction of oxygen on cellular vitreous carbon foam catalyst. ACS Catal. 7, 7466–7478 (2017). https://doi.org/10.1021/acscatal.7b01977

    Article  CAS  Google Scholar 

  132. L.I. Grishechko, G. Amaral-Labat, V. Fierro, et al., Biosourced, highly porous, carbon xerogel microspheres. RSC Adv. 6, 65698–65708 (2016). https://doi.org/10.1039/C6RA09462G

    Article  CAS  Google Scholar 

  133. C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990)

    Google Scholar 

  134. A. Szczurek, G. Amaral-Labat, V. Fierro, et al., Porosity of resorcinol-formaldehyde organic and carbon aerogels exchanged and dried with supercritical organic solvents. Mater. Chem. Phys. 129, 1221–1232 (2011). https://doi.org/10.1016/j.matchemphys.2011.06.021

    Article  CAS  Google Scholar 

  135. G. Amaral-Labat, A. Szczurek, V. Fierro, et al., Impact of depressurizing rate on the porosity of aerogels. Microporous Mesoporous Mater. 152, 240–245 (2012). https://doi.org/10.1016/j.micromeso.2011.11.023

    Article  CAS  Google Scholar 

  136. İ.A. Şengil, M. Özacar, Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel. J. Hazard. Mater. 157, 277–285 (2008). https://doi.org/10.1016/j.jhazmat.2007.12.115

    Article  CAS  Google Scholar 

  137. T. Ogata, Y. Nakano, Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin. Water Res. 39, 4281–4286 (2005). https://doi.org/10.1016/j.watres.2005.06.036

    Article  CAS  Google Scholar 

  138. K. Kraiwattanawong, S.R. Mukai, H. Tamon, A.W. Lothongkum, Preparation of carbon cryogels from wattle tannin and furfural. Microporous Mesoporous Mater. 98, 258–266 (2007). https://doi.org/10.1016/j.micromeso.2006.09.007

    Article  CAS  Google Scholar 

  139. K. Kraiwattanawong, S.R. Mukai, H. Tamon, A.W. Lothongkum, Improvement of mesoporosity of carbon cryogels by acid treatment of hydrogels. Microporous Mesoporous Mater. 115, 432–439 (2008). https://doi.org/10.1016/j.micromeso.2008.02.016

    Article  CAS  Google Scholar 

  140. A. Szczurek, G. Amaral-Labat, V. Fierro, et al., The use of tannin to prepare carbon gels. Part II. carbon cryogels. Carbon 49, 2785–2794 (2011). https://doi.org/10.1016/j.carbon.2011.03.005

    Article  CAS  Google Scholar 

  141. G. Carlson, D. Lewis, K. McKinley, et al., Aerogel commercialization: technology, markets and costs. J. Non-Cryst. Solids 186, 372–379 (1995). https://doi.org/10.1016/0022-3093(95)00069-0

    Article  CAS  Google Scholar 

  142. G. Amaral-Labat, A. Szczurek, V. Fierro, et al., Systematic studies of tannin–formaldehyde aerogels: preparation and properties. Sci. Technol. Adv. Mater. 14, 015001 (2013). https://doi.org/10.1088/1468-6996/14/1/015001

    Article  CAS  Google Scholar 

  143. G. Reichenauer, Structural characterization of aerogels, in Aerogels Handbook, ed. by M.A. Aegerter, N. Leventis, M.M. Koebel (Springer, New York, 2011), pp. 449–498

    Chapter  Google Scholar 

  144. G. Amaral-Labat, L.I. Grishechko, V. Fierro, et al., Tannin-based xerogels with distinctive porous structures. Biomass Bioenergy 56, 437–445 (2013). https://doi.org/10.1016/j.biombioe.2013.06.001

    Article  CAS  Google Scholar 

  145. G. Amaral-Labat, A. Szczurek, V. Fierro, A. Celzard, Unique bimodal carbon xerogels from soft templating of tannin. Mater. Chem. Phys. 149-150, 193–201 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.006

    Article  CAS  Google Scholar 

  146. N. Rey-Raap, A. Szczurek, V. Fierro, et al., Advances in tailoring the porosity of tannin-based carbon xerogels. Ind. Crop. Prod. 82, 100–106 (2016). https://doi.org/10.1016/j.indcrop.2015.12.001

    Article  CAS  Google Scholar 

  147. M. Haghgoo, A.A. Yousefi, M.J.Z. Mehr, Nano porous structure of resorcinol–formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate. Iran. Polym. J. 21, 211–219 (2012). https://doi.org/10.1007/s13726-012-0023-4

    Article  CAS  Google Scholar 

  148. A. Celzard, V. Fierro, G. Amaral-Labat, Adsorption by carbon gels, in Novel Carbon Adsorbents, ed. by J.M.D. Tascón (Elsevier, Oxford, 2012), pp. 207–244

    Chapter  Google Scholar 

  149. J.L. Figueiredo, M.F.R. Pereira, Carbon as catalyst, in Carbon Materials for Catalysis, ed. by P. Serp, J.L. Figueiredo (Wiley, Hoboken, 2008), pp. 127–217

    Chapter  Google Scholar 

  150. A. Szczurek, G. Amaral-Labat, V. Fierro, et al., Chemical activation of tannin-based hydrogels by soaking in KOH and NaOH solutions. Microporous Mesoporous Mater. 196, 8–17 (2014). https://doi.org/10.1016/j.micromeso.2014.04.051

    Article  CAS  Google Scholar 

  151. K. Hashida, R. Makino, S. Ohara, Amination of pyrogallol nucleus of condensed tannins and related polyphenols by ammonia water treatment. Holzforschung 63, 319–326 (2008). https://doi.org/10.1515/HF.2009.043

    Article  CAS  Google Scholar 

  152. A. Sanchez-Sanchez, M.T. Izquierdo, S. Mathieu, et al., Outstanding electrochemical performance of highly N- and O-doped carbons derived from pine tannin. Green Chem. 19, 2653–2665 (2017). https://doi.org/10.1039/C7GC00491E

    Article  CAS  Google Scholar 

  153. G.A. Amaral-Labat, A. Pizzi, A.R. Gonçalves, et al., Environment-friendly soy flour-based resins without formaldehyde. J. Appl. Polym. Sci. 108, 624–632 (2008). https://doi.org/10.1002/app.27692

    Article  CAS  Google Scholar 

  154. G. Amaral-Labat, L. Grishechko, A. Szczurek, et al., Highly mesoporous organic aerogels derived from soy and tannin. Green Chem. 14, 3099–3106 (2012). https://doi.org/10.1039/C2GC36263E

    Article  CAS  Google Scholar 

  155. A. Cayla, F. Rault, S. Giraud, et al., PLA with intumescent system containing lignin and ammonium polyphosphate for flame retardant textile. Polymers 8, 331 (2016). https://doi.org/10.3390/polym8090331

    Article  CAS  Google Scholar 

  156. L.I. Grishechko, G. Amaral-Labat, A. Szczurek, et al., New tannin–lignin aerogels. Ind. Crop. Prod. 41, 347–355 (2013). https://doi.org/10.1016/j.indcrop.2012.04.052

    Article  CAS  Google Scholar 

  157. W.L. Griffith, A.L. Compere, Separation of alcohols from solution by lignin gels. Sep. Sci. Technol. 43, 2396–2405 (2008). https://doi.org/10.1080/01496390802148571

    Article  CAS  Google Scholar 

  158. M. Nishida, Y. Uraki, Y. Sano, Lignin gel with unique swelling property. Bioresour. Technol. 88, 81–83 (2003). https://doi.org/10.1016/S0960-8524(02)00264-X

    Article  CAS  Google Scholar 

  159. T. Lindström, C. Söremark, L. Westman, Lignin gels as a medium in gel permeation chromatography. J. Appl. Polym. Sci. 21, 2873–2876 (1977). https://doi.org/10.1002/app.1977.070211102

    Article  Google Scholar 

  160. C. Wang, Y. Xiong, B. Fan, et al., Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, sound-absorption and thermal insulation. Sci. Rep. 6, 32383 (2016). https://doi.org/10.1038/srep32383

    Article  CAS  Google Scholar 

  161. V. Hemmilä, S. Adamopoulos, O. Karlsson, A. Kumar, Development of sustainable bio-adhesives for engineered wood panels – a review. RSC Adv. 7, 38604–38630 (2017). https://doi.org/10.1039/C7RA06598A

    Article  Google Scholar 

  162. L.I. Grishechko, G. Amaral-Labat, A. Szczurek, et al., Lignin–phenol–formaldehyde aerogels and cryogels. Microporous Mesoporous Mater. 168, 19–29 (2013). https://doi.org/10.1016/j.micromeso.2012.09.024

    Article  CAS  Google Scholar 

  163. R.W. Pekala, C.T. Alviso, J.D. LeMay, Organic aerogels: microstructural dependence of mechanical properties in compression. J. Non-Cryst. Solids 125, 67–75 (1990). https://doi.org/10.1016/0022-3093(90)90324-F

    Article  CAS  Google Scholar 

  164. A. Sánchez-Sánchez, A. Martinez de Yuso, F.L. Braghiroli, et al., Sugarcane molasses as a pseudocapacitive material for supercapacitors. RSC Adv. 6, 88826–88836 (2016). https://doi.org/10.1039/C6RA16314A

    Article  CAS  Google Scholar 

  165. A. Sánchez-Sánchez, V. Fierro, M.T. Izquierdo, A. Celzard, Functionalized, hierarchical and ordered mesoporous carbons for high-performance supercapacitors. J. Mater. Chem. A 4, 6140–6148 (2016). https://doi.org/10.1039/C6TA00738D

    Article  CAS  Google Scholar 

  166. N. Rey-Raap, A. Szczurek, V. Fierro, et al., Towards a feasible and scalable production of bio-xerogels. J. Colloid Interface Sci. 456, 138–144 (2015). https://doi.org/10.1016/j.jcis.2015.06.024

    Article  CAS  Google Scholar 

  167. J.L. Drury, D.J. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003). https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  Google Scholar 

  168. N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27–46 (2000). https://doi.org/10.1016/S0939-6411(00)00090-4

    Article  CAS  Google Scholar 

  169. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012). https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  170. C. Delgado-Sánchez, G. Amaral-Labat, L.I. Grishechko, et al., Fire-resistant tannin–ethylene glycol gels working as rubber springs with tuneable elastic properties. J. Mater. Chem. A 5, 14720–14732 (2017). https://doi.org/10.1039/C7TA03768F

    Article  Google Scholar 

  171. C. Delgado-Sánchez, J. Sarazin, F.J. Santiago-Medina, et al., Impact of the formulation of biosourced phenolic foams on their fire properties. Polym. Degrad. Stab. 153, 1–14 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.04.006

    Article  CAS  Google Scholar 

  172. G. Amaral-Labat, L.I. Grishechko, G.F.B. Lenz e Silva, et al., Rubber-like materials derived from biosourced phenolic resins. J. Phys. Conf. Ser. 879, 012013 (2017). https://doi.org/10.1088/1742-6596/879/1/012013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the CPER 2007–2013 “Structuration du Pôle de Compétitivité Fibres Grand’Est” (Competitiveness Fibre Cluster), through local (Conseil Général des Vosges), regional (Région Lorraine), national (DRRT and FNADT), and European (FEDER) funds.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arenillas, A. et al. (2019). Organic and Carbon Gels Derived from Biosourced Polyphenols. In: Organic and Carbon Gels. Advances in Sol-Gel Derived Materials and Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-13897-4_2

Download citation

Publish with us

Policies and ethics