Skip to main content

Recycling Expired Photovoltaic Panels in Poland

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

The rapid progress in photovoltaics increases the availability of inexpensive and reliable electricity for individual, industrial and commercial users. Photovoltaic installations convert solar energy into electric energy, thus reducing fossil fuel use and lowering greenhouse gas emissions. The Polish photovoltaics market began to develop rapidly in 2013, and the installed capacity of solar-powered systems continues to increase every year. According to the Institute for Renewable Energy, the total installed capacity of photovoltaic systems reached around 199 MW at the end of 2016. More than 101 MW was installed in 2016 alone, including 73 MW in micro-generation systems. Polycrystalline installations are most popular, and they are followed by monocrystalline modules. Solar panels covered with amorphous silicon and thin film are less popular solutions. The growth of the Polish photovoltaics market is driven mostly by high levels of consumer awareness rather than a cohesive energy policy. Solar panels have an estimated life of 20–30 years, which means that expired modules will have to be effectively managed in the near future. Recycling appears to be the most cost-effective and environmentally-friendly solution, and it can be used to recover more than 90% of the components and materials in solar panels. Recycling delivers a host of environmental benefits by saving energy and raw materials, minimizing the release of harmful chemical compounds, and reducing the space for storing expired and damaged panels. The article discusses various solutions for recycling photovoltaic modules as part of a strategy promoting the sustainable management of waste from expired PV systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Tao, S. Yu, Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 141, 108–124 (2015)

    Article  Google Scholar 

  2. Y. Xu, J. Li, Q. Tan, L.A. Peters, C. Yang, CGlobal status of recycling waste solar panels a review. Waste Manag 75, 450–458 (2018)

    Article  Google Scholar 

  3. E. Klugmann-Radziemska, Current trends in recycling of photovoltaic solar cells and modules waste. Chem. Didactics Ecol. Metrol. 17(1–2), 89–95 (2012)

    Article  Google Scholar 

  4. B. Bakhiyi, F. Labreche, J. Zayed, The photovoltaic industry on the path to a sustainable future—environmental and occupational health issues. Environ. Int. 73, 224–234 (2014)

    Article  Google Scholar 

  5. D.W. Luo, G.L. Zhang, J. Zhang, J. Li, T.J. Li, Principle and research progress on preparation solar grade (SoG) silicon by metallurgical route. Foundry Technol. 29(12), 1721–1726 (2008)

    Google Scholar 

  6. C. Winneker Global Market Outlook for Photovoltaics 2013–2017 (2013), http://www.construction21.org/articles/h/report–global-market-outlook-for-photovoltaics-2013-2017.html

  7. E. Klugmann-Radziemska, P. Ostrowski, W.M. Lewandowski, M. Ryms, Aspekty ekologiczne i ekonomiczne recyklingu krzemowych ogniw i modułów fotowoltaicznych. NAFTA-GAZ 6, 481–485 (2010)

    Google Scholar 

  8. IRENA, http://www.irena.org/publications. Accessed 15 May 2018. 8

  9. IEO Report, https://www.cire.pl/pliki/2/2017/raportpv_2017_final_18_05_2017.pdf. Accessed 15 May 2018

  10. E. Radziemska, P. Ostrowski, A. Cenian, M. Sawczak, Obróbka chemiczna, termiczna oraz laserowa w recyklingu ogniw i modułów fotowoltaicznych z krystalicznego krzemu. Proc. ECOpole 4(1), 237–242 (2010)

    Google Scholar 

  11. A. Müller, K. Wambach E. Alsema, Life Cycle Analysis of a Solar Module Recycling Process, 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain (2005)

    Google Scholar 

  12. V. Monier, M. Hestin, Study on Photovoltaic Panels Supplementing the Impact Assessment for a Recast of the WEEE Directive, ed. by B.I. Service, A Project Under the Framework Contract ENV.G.4/FRA/2007/0067, Paris, France (2011)

    Google Scholar 

  13. NIK, https://www.nik.gov.pl/aktualnosci/nik-o-elektrowniach-wiatrowych.html. Accessed 15 May 2018

  14. NIK, https://www.nik.gov.pl/aktualnosci/nik-o-lokalizacji-i-budowie-ladowych-farm-wiatrowych.html. Accesed 15 May 2018

  15. PSES Report, http://pses.eu/uploads/PDF/raport14.pdf. Accessed 16 May 2018

  16. ISE Report, https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf. Accesed 16 May 2018

  17. EUR LEX, https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32012L0019. Accesed 16 May 2018

  18. S. Weckend, A. Wade, G, Heath, End-of-Life Management: Solar Photovoltaic Panels. IRENA Report (2016)

    Google Scholar 

  19. M. Fthenakis, H.C. Kim, E. Alsema, Emissions from photovoltaic lifecycles. Environ. Sci. Technol. 42, 2168–2174 (2008)

    Article  Google Scholar 

  20. X. Miao, Research on the Extended Producer Responsibility of Electronic Waste Recycling Huazhong, Univ. Sci. Technol. (2015)

    Google Scholar 

  21. J.K. Choi, V. Fthenakis, Design and optimization of photovoltaics recycling infrastructure. Environ. Sci. Technol. 44, 8678–8683 (2010)

    Article  Google Scholar 

  22. F. Cucchiella, I. D’Adamo, P. Rosa, End-of-life of used photovoltaic modules: a financial analysis Renew. Sustain. Energy Rev. 47, 552–561 (2015)

    Article  Google Scholar 

  23. M. Goe, G. Gaustad, Strengthening the case for recycling photovoltaics: an energy payback analysis. Appl. Energy 120, 41–48 (2015)

    Article  Google Scholar 

  24. J. Peng, L. Lu, H. Yang, Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew. Sustain. Energy Rev. 19, 255–274 (2013)

    Article  Google Scholar 

  25. G. Granata, F. Pagnanelli, E. Moscardini, T. Havlik, L. Toro, Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells 123, 239–248 (2014)

    Article  Google Scholar 

  26. K. Yamashita, A. Umemoto, K. Okamoto, Research and development on recycling and reuse treatment technologies for crystalline silicon photovoltaic modules, in : Proceedings of the Third World Congress on PV Energy, Osaka, Japan (2003)

    Google Scholar 

  27. V.M. Fthenakis, H.C. Kim, E. Alsema, Emissions from photovoltaic life cycles. Environ. Sci. Technol. 42(6), 2168–2174 (2008)

    Article  Google Scholar 

  28. N.C. McDonald, J.M. Pearce, Producer responsibility and recycling of solar photovoltaic modules. Energy Policy 38, 7041–7047 (2010)

    Article  Google Scholar 

  29. V.M. Fthenakis, End-of-life management and recycling of PV modules. Energy Policy 28, 1051–1058 (2000)

    Article  Google Scholar 

  30. F. Pagnanelli, E. Moscardini, G. Granata, T.A. Atia, P. Altimari, T. Havlik, L. Toro, Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Manag 59, 422–431 (2017)

    Article  Google Scholar 

  31. W.H. Huang, W.J. Shin, L. Wang, W.C. Sun, M. Tao, Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 144, 22–31 (2017)

    Article  Google Scholar 

  32. PV Cycle, http://www.pvcycle.org/press/breakthrough-in-pv-module-recycling/. Accessed 16 May 2018

  33. E.L. Cynthia, C.E.L. Latunussa, F. Fulvio Ardente, G.A. Gian Andrea Blengini, L. Mancini, Life cycle assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Sol. Energy Mater. Sol. Cells 156, 101–111 (2016)

    Google Scholar 

  34. B. Jung, J. Park, D. Seo, N. Park, Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustain. Chem. Eng. 4, 4079–4083 (2016)

    Article  Google Scholar 

  35. P. Dias, S. Javimczik, M. Benevit, H. Veit, Recycling WEEE: polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Manag 60, 716–722 (2016)

    Article  Google Scholar 

  36. A.M.K. Gustafsson, M.R.S.J. Foreman, C. Ekberg, Recycling of high purity selenium from CIGS solar cell waste materials. Waste Manag 34(10), 1775–1782 (2014)

    Article  Google Scholar 

  37. E. Klugmann-Radziemska, P. Ostrowski, Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energy 35(8), 1751–1759 (2010)

    Article  Google Scholar 

  38. E. Klugmann-Radziemska, P. Ostrowski, K. Drabczyk, P. Panek, M. Szkodo, Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Sol. Energy Mater. Sol. Cells 94, 2275–2282 (2010)

    Article  Google Scholar 

  39. T. Doi, I. Tsuda, H. Unagida, A. Murata, K. Sakuta, K. Kurokawa, Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 67, 397–403 (2001)

    Article  Google Scholar 

  40. S. Kanga, S. Yoo, J. Lee, B. Boo, H. Ryu, Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energy 47, 152–159 (2012)

    Article  Google Scholar 

  41. L. Dong, Research on Waste Crystalline Silicon Solar Panels Resource Recovery (Southwest Jiaotong University, 2009)

    Google Scholar 

  42. Y. Kim, J. Lee, Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent. Sol. Energy Mater. Sol. Panels 98, 317–322 (2012)

    Article  Google Scholar 

  43. L.J. Fernandez, R. Ferrer, D.F. Aponte, P. Fernandez, Recycling silicon solar cell waste in cement-based systems. Sol. Energ. Mat. Sol. C. 95, 1701–1706 (2011)

    Article  Google Scholar 

  44. K. Larsen, End-of-life PV: then what? Renew. Energy Focus 10(4), 48–53 (2009)

    Article  Google Scholar 

  45. S. Marciniak, Makro i mikroekonomia (Podstawowe problemy współczesności. PWN, Warszawa, 2018)

    Google Scholar 

  46. D. Begg, S. Fischer, R. Dornbusch, Ekonomia—Makroekonomia (PWE, Warszawa, 2000)

    Google Scholar 

  47. T. Kiziukiewicz, Rachunkowość zarządcza (Wyd. Ekspert, Wrocław, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Hałacz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hałacz, J., Neugebauer, M., Sołowiej, P., Nalepa, K., Wesołowski, M. (2020). Recycling Expired Photovoltaic Panels in Poland. In: Wróbel, M., Jewiarz, M., Szlęk , A. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-13888-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13888-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13887-5

  • Online ISBN: 978-3-030-13888-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics