Skip to main content

The Physical-Mechanical Properties of Fuel Briquettes Made from RDF and Wheat Straw Blends

  • Conference paper
  • First Online:
Book cover Renewable Energy Sources: Engineering, Technology, Innovation

Abstract

Energy recovery from municipal and agricultural wastes is a major element of waste treatment. Refuse-Derived Fuel (RDF) is produced from Municipal Solid Waste (MSW) as an alternative fuel for power plants. Briquetting increases homogeneity and density of RDF, reducing costs of handling, transport and storage. In present studies, the properties of 1:1 RDF:wheat straw blend briquettes were investigated. Samples were manufactured in lab-scale EDZ-20 hydraulic press using die set of 50 mm diameter at 56, 66, and 77 MPa, at temperatures of 100 and 120 °C. Density, net calorific value (NCV), fixed carbon, volatile matter, ash content, and resistance to compression of the briquettes were analyzed. Moreover, structural parameters of RDF, wheat straw, and the briquettes’ ashes were examined by X-ray diffraction, using a high-resolution X-ray Diffractometer (Empyrean, Panalytical) with CuKα radiation and a Ni filter at generator voltage and current of 40 kV, 30 mA. Proportional detector was used. Samples were investigated at room temperature in θ-2θ geometry, from 10 to 70 deg with step size of 0.01 deg and counting time 6 s per point. Source divergence and detector slit were 1/2, with Soller slits. Crystalline phases were identified using HighScore Plus software package. Studies have demonstrated that the RDF and wheat straw mixture can be compressed to a density of 770–850 kg/m3. Also, heating rate of the die appears to affect density and durability of the briquettes. Consequently, RDF-wheat straw blend is feasible for feedstock in briquetting and can be used for waste management for energy purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Wasielewski, S. Stelmach, A. Sobolewski, Production and use of solid recovered fuels. CHEMIK 65, 572–579 (2011)

    Google Scholar 

  2. U. Arena, Process and technological aspects of municipal solid waste gasification. A review. Waste Manag. 32, 625–639 (2012)

    Article  Google Scholar 

  3. W. Jodkowski, A. Sitka, B. Szumiło, Gasification of the oversize fraction of municipal waste with thermal power generation. Arch. Waste Manag. Environ. Prot. 16, 45–52 (2014)

    Google Scholar 

  4. M. Rejdak, R. Wasielewski, Industrial tests of co-pyrolysis solid recovered fuel (SRF) and hard coal. Arch. Waste Manag. Environ. Prot. 15, 29–36 (2013)

    Google Scholar 

  5. M. Reza, A. Soltani, R. Ruparathna, R. Sadiq, K. Hewage, Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of MetroVancouver waste management. Resour. Conserv. Recycl. 81, 105–114 (2013)

    Article  Google Scholar 

  6. M. Nasrullah, M. Hurme, P. Oinas, J. Hannula, P. Vainikka, Influence of input waste feedstock on solid recovered fuel production in a mechanical treatment plant. Fuel Process. Technol. 163, 35–44 (2017)

    Article  Google Scholar 

  7. C. Bessi, L. Lombardi, R. Meoni, A. Canovai, A. Corti, Solid recovered fuel: an experiment on classification and potential applications. Waste Manag. 47, 184–194 (2016)

    Article  Google Scholar 

  8. E. Iacovidou, J. Hahladakis, I. Deans, C. Velis, P. Purnell, Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: Impact on multi-dimensional resource recovery value. Waste Manag. 73, 535–545 (2017)

    Article  Google Scholar 

  9. A.S. Akdağ, A. Atımtay, F.D. Sanin, Comparison of fuel value and combustion characteristics of two different RDF samples. Waste Manag. 47, 217–224 (2016)

    Article  Google Scholar 

  10. C.A. Velis, P.J. Longhurst, G.H. Drew, R. Smith, S.J.T. Pollard, Production and quality assurance of solid recovered fuels using mechanical—biological treatment (MBT) of waste: a comprehensive assessment. Crit. Rev. Environ. Sci. Technol. 40, 979–1105 (2010)

    Article  Google Scholar 

  11. E. Rada, M. Ragazzi, Selective collection as a pretreatment for indirect solid recovered fuel generation. Waste Manag. 34, 291–297 (2014)

    Article  Google Scholar 

  12. A. Maciejewska, H. Veringa, J. Sanders, S. Peteves, Co-firing of biomass with coal: constraints and role of biomass pre-treatment. DG JRC Inst Energy (2006)

    Google Scholar 

  13. B. Havrland, T. Ivanova, B. Łapczyńska-Kordon, M. Kolarikova, Comparative analysis of bio-raw materials and biofuels, in Proceedings of 12th International Scientific Conference on Engineering for Rural Development, ed. by L. Malinovska, V. Osadcuks (Latvia University of Agriculture Faculty of Engineering, 2013), pp. 541–544

    Google Scholar 

  14. A. Demirbas, Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004)

    Article  Google Scholar 

  15. I. Niedziółka, A. Zuchniarz, Analiza energetyczna wybranych rodzajów biomasy pochodzenia roślinnego. MOTROL 8A, 232–237 (2006)

    Google Scholar 

  16. T. Hebda, A. Złobecki, Wpływ stopnia rozdrobnienia słomy na trwałość kinetyczną brykietów. Agric. Eng. 137, 57–64 (2012)

    Google Scholar 

  17. M. Czop, M. Kajda-Szczęśniak, Fuels from the wastes as a source of renewable energy. Arch. Waste Manag. Environ. Prot. 15, 83–92 (2013)

    Google Scholar 

  18. W. Denisiuk, Słoma – potencjał masy i energii. Inżynieria Rolnicza 100, 23–30 (2008)

    Google Scholar 

  19. K. Kubica, M. Jewiarz, R. Kubica, A. Szlęk, Straw combustion: Pilot and Laboratory studies on a straw-fired grate boiler. Energy Fuels 30, 4405–4410 (2016). https://doi.org/10.1021/acs.energyfuels.5b02693

    Article  Google Scholar 

  20. A. Demirbaş, Physical properties of briquettes from waste paper and wheat straw mixtures. Energy Convers. Manag. 40, 437–445 (1999)

    Article  Google Scholar 

  21. G. Dunnu, J. Maier, T. Hilber, G. Scheffknecht, Characterisation of large solid recovered fuel particles for direct co-firing in large PF power plants. Fuel 88, 2403–2408 (2009)

    Article  Google Scholar 

  22. R. Vesterinen, M. Flyktman, Organic emissions from co-combustion of RDF with wood chips and milled peat in a bubbling pluidized bed boiler. Chemosphere 32, 681–689 (1996)

    Article  Google Scholar 

  23. J. Frączek (ed.), Optymalizacja procesu produkcji paliw kom paktowanych wytwarzanych z roślin energetycznych. PTIR, Kraków (2010). ISBN 978–83-930818-0-6

    Google Scholar 

  24. S. Mani, L.G. Tabil, S. Sokhansaj, Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30, 648–654 (2006)

    Article  Google Scholar 

  25. P. Križan, The Densification Process of Wood Waste (De Gruyter Open Ltd, Warsaw/Berlin, 2015)

    Book  Google Scholar 

  26. X. Zhang, W. Peng, L. Han, W. Xiao, X. Liu, Effects of different pretreatments on compression molding of wheat straw and mechanism analysis. Biores. Technol. 251, 210–217 (2018)

    Article  Google Scholar 

  27. T. Cordero, J. Rodriguez-Mirasola, J. Pastranaa, J.J. Rodriguez, Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel 83(11–12), 1585–1590 (2004)

    Article  Google Scholar 

  28. M.W. Seo, S.D. Kim, S.H. Lee, J.G. Lee, Pyrolysis characteristics of coal and RDF blends in non-isothermal and isothermal conditions. J. Anal. Appl. Pyrol. 88, 160–167 (2010)

    Article  Google Scholar 

  29. T. Kupka, M. Mancini, M. Irmer, R. Weber, Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel. Fuel 87, 2824–2837 (2008)

    Article  Google Scholar 

  30. DIN 51731: Testing of Solid Fuels & Compressed Untreated Wood, Requirements and Testing. Deutsches Institut fur Normung, Berlin, Germany (1996)

    Google Scholar 

  31. PN-EN ISO 18134-3:2015-11 – “Solid biofuels – Determination of moisture content”

    Google Scholar 

  32. PN-EN ISO 18122:2016-01 – “Solid biofuels - Determination of ash content (ISO 18122:2015)”

    Google Scholar 

  33. PN-EN ISO 18125:2017-07 – “Solid biofuels - Determination of calorific value (ISO 18125:2017)”

    Google Scholar 

  34. PN-G-04516:1998 – “Solid fuels - Determination of the volatile matter by gravimetric method”

    Google Scholar 

  35. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text. Res. J. 29, 786–794 (1959)

    Article  Google Scholar 

  36. S.T. Wagland, P. Kilgallon, R. Coveney, A. Garg, R. Smith, P.J. Longhurst, S.J.T. Pollard, N. Simms, Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor. Waste Manag. 31, 1176–1183 (2011)

    Article  Google Scholar 

  37. J. Gug, D. Cacciola, M.J. Sobkowicz, Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag. 35, 283–292 (2015)

    Article  Google Scholar 

  38. O. Çepeliogŭllar, H. Haykırı-Açma, S. Yaman, Kinetic modelling of RDF pyrolysis: model-fitting and model-free approaches. Waste Manag. 48, 275–284 (2016)

    Article  Google Scholar 

  39. J. Mółka, B. Łapczyńska-Kordon, Właściwości energetyczne wybranych gatunków biomasy. Inżynieria Rolnicza 131, 141–147 (2011)

    Google Scholar 

  40. K. Słomka-Polonis, B. Kordon-Łapczyńska, J. Frączek, Drying kinetics of RDF: experimental investigation and modeling, in BIO Web of Conferences “Contemporary Research Trends in Agricultural Engineering” – Proceedings, vol. 10, ed. by A. Szeląg-Sikora , p. 02030. https://doi.org/10.1051/bioconf/20181002030

    Article  Google Scholar 

  41. L. Wamukonya, B. Jenkins, Durability and relaxation of sawdust and wheat-straw briquettes as possible fuels for Kenya. Biomass Bioenergy 8, 175–179 (1995)

    Article  Google Scholar 

  42. M. Jewiarz, K. Mudryk, K. Dziedzic, A. Pociask, Agglomeration of dried Ilex paraguariensis for consumption purposes, in Proceedings of 17th International Scientific Conference on Engineering for Rural Development, ed. by L. Malinovska, V. Osadcuks (Latvia University of Agriculture Faculty of Engineering 2018), pp. 1593–1598

    Google Scholar 

  43. L. Jia, Z. Sun, X. Ge, D. Xin, J. Zhang, Comparison of the delignifiability and hydrolysability of wheat straw and corn stover in aqueous ammonia pretreatment. BioRes. 8, 4505–4517 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Fitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Słomka-Polonis, K. et al. (2020). The Physical-Mechanical Properties of Fuel Briquettes Made from RDF and Wheat Straw Blends. In: Wróbel, M., Jewiarz, M., Szlęk , A. (eds) Renewable Energy Sources: Engineering, Technology, Innovation. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-13888-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13888-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13887-5

  • Online ISBN: 978-3-030-13888-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics