Skip to main content

The Nuclear Physics Uncertainty on Kilonova Heating Rates and the Role of Fission

  • Conference paper
  • First Online:
Nuclei in the Cosmos XV

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 219))

Abstract

The detection of an electromagnetic counterpart to GW170817 suggests that r-process elements are produced in neutron star mergers. This electromagnetic counterpart has been modeled as a kilonova, which is a light curve thought to be powered mainly from the radioactive decay of heavy elements formed. We investigate uncertainties on the nuclear heating from the nuclear physics inputs of nucleosynthesis simulations. Using 12 theoritical mass models in regions where experimental mass measurements are unavailable, we find that the uncertainty in the total nuclear heating rate is a factor of a few. The \(\beta \)-decay is the dominating heating channel at about 1 day after merger for all 12 mass models. The energy contribution from fission are not neglectable at around one day.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LIGO Scientific Collaboration and Virgo Collaboration, GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Google Scholar 

  2. A. Aprahamian, R. Surman, A. Frebel, G. C. McLaughlin, A. Arcones, A. B. Balantekin, J. Barnes et al, FRIB and the GW170817 Kilonova. arXiv preprint arXiv:1809.00703 (2018)

  3. Jennifer Barnes, Wu Daniel Kasen, Gabriel Martínez-Pinedo Meng-Ru, Radioactivity and Thermalization in the Ejecta of Compact Object Mergers and Their Impact on. Astrophys. J. 829(2), 110 (2016)

    Google Scholar 

  4. O. Korobkin, S. Rosswog, A. Arcones, C. Winteler, On the astrophysical robustness of the neutron star merger r-process. MNRAS 426(3), 1940–1949 (2012)

    Article  ADS  Google Scholar 

  5. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109–110, 1–204 (2016)

    Article  ADS  Google Scholar 

  6. J. Duflo, A.P. Zuker, Microscopic mass formulas. Phys. Rev. C 52(1), R23–R27 (1995)

    Article  ADS  Google Scholar 

  7. S. Goriely, N. Chamel, and J. M. Pearson. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter. Phys. Rev. C, 82(3):035804, 2010

    Google Scholar 

  8. Goriely, Stéphane, N. Chamel, J.M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C88(2), 024308 (2013)

    Google Scholar 

  9. Goriely, Stéphane, R. Capote, Uncertainties of mass extrapolations in Hartree-Fock-Bogoliubov mass models. Phys. Rev. C89(5), 054318 (2014)

    Google Scholar 

  10. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Nuclear energy density optimization: Large deformations. Phys. Rev. C 85(2), 024304 (2012)

    Google Scholar 

  11. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer. A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities. Nucl. Phys. A, 635(1):231–256, 1998

    Article  ADS  Google Scholar 

  12. Hiroyuki Koura, Takahiro Tachibana, Masahiro Uno, Masami Yamada, Nuclidic Mass Formula on a Spherical Basis with an Improved Even-Odd Term. Prog. Theor. Phys. 113(2), 305–325 (2005)

    Google Scholar 

  13. Min Liu, Ning Wang, Wu Yangge Deng, Xizhen, Further improvements on a global nuclear mass model. Phys. Rev. C 84(1), 014333 (2011)

    Google Scholar 

  14. Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu. The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C, 41(3):030003, 2017

    Google Scholar 

  15. G. Audi, F. G. Kondev, Meng Wang, W. J. Huang, and S. Naimi. The NUBASE2016 evaluation of nuclear properties. Chin. Phys. C, 41(3):030001, 2017

    Article  ADS  Google Scholar 

  16. Y. Zhu, R.T. Wollaeger, N. Vassh, R. Surman, T.M. Sprouse, M.R. Mumpower, P. Möller, G.C. McLaughlin, O. Korobkin, T. Kawano et al., Californium-254 and Kilonova Light Curves. ApJL. 863(2), L23 (2018). Aug

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Y.L., Sprouse, T., Mumpower, M.R., Vassh, N., Surman, R., McLaughlin, G.C. (2019). The Nuclear Physics Uncertainty on Kilonova Heating Rates and the Role of Fission. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_92

Download citation

Publish with us

Policies and ethics