Skip to main content

The Beta-Oslo Method: Experimentally Constrained (\(n,\gamma \)) Reaction Rates Relevant to the r-Process

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 219))

Abstract

Unknown neutron-capture reaction rates remain a significant source of uncertainty in state-of-the-art r-process nucleosynthesis reaction network calculations. As the r-process involves highly neutron-rich nuclei for which direct (\(n,\gamma \)) cross-section measurements are virtually impossible, indirect methods are called for to constrain (\(n,\gamma \)) cross sections used as input for the r-process nuclear network. Here we discuss the newly developed beta-Oslo method, which is capable of provding experimental input for calculating (\(n,\gamma \)) rates of neutron-rich nuclei. The beta-Oslo method represents a first step towards constraining neutron-capture rates of importance to the r-process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  2. E.M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  3. A.G.W. Cameron, Publ. Astron. Soc. Pac. 69, 201 (1957)

    Article  ADS  Google Scholar 

  4. E. Pian et al., Nature 551, 67 (2017)

    Article  ADS  Google Scholar 

  5. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  6. M.R. Mumpower et al., Prog. Part. Nucl. Phys. 86, 86 (2016)

    Article  ADS  Google Scholar 

  7. J. de Jesús Mendoza-Temis et al., Phys. Rev. C 92, 055805 (2015)

    Article  ADS  Google Scholar 

  8. A. Spyrou et al., Phys. Rev. Lett. 113, 232502 (2014)

    Article  ADS  Google Scholar 

  9. S.N. Liddick et al., Phys. Rev. Lett. 116, 242502 (2016)

    Article  ADS  Google Scholar 

  10. M. Guttormsen et al., Nucl. Instrum. Methods Phys. Res. A 374, 371 (1996)

    Article  ADS  Google Scholar 

  11. M. Guttormsen, T. Ramsøy, J. Rekstad, Nucl. Instrum. Methods Phys. Res. A 255, 518 (1987)

    Article  ADS  Google Scholar 

  12. A. Schiller et al., Nucl. Instrum. Methods Phys. Res. A 447, 498 (2000)

    Article  ADS  Google Scholar 

  13. A.C. Larsen et al., Phys. Rev. C 83, 034315 (2011)

    Article  ADS  Google Scholar 

  14. B.V. Kheswa et al., Phys. Lett. B 744, 268 (2015)

    Article  ADS  Google Scholar 

  15. A. Voinov et al., Phys. Rev. Lett. 93, 142504 (2004)

    Article  ADS  Google Scholar 

  16. M. Wiedeking et al., Phys. Rev. Lett. 108, 162503 (2012)

    Article  ADS  Google Scholar 

  17. M.D. Jones et al., Phys. Rev. C 97, 024327 (2018)

    Article  ADS  Google Scholar 

  18. A.C. Larsen et al., Phys. Rev. Lett. 111, 242504 (2013)

    Article  ADS  Google Scholar 

  19. A. Simon et al., Phys. Rev. C 93, 034303 (2016)

    Article  ADS  Google Scholar 

  20. A.C. Larsen, S. Goriely, Phys. Rev. C 82, 014318 (2010)

    Article  ADS  Google Scholar 

  21. A. Simon et al., Nucl. Instrum. Methods Phys. Res. Sect. A 703, 16 (2013)

    Article  ADS  Google Scholar 

  22. D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013)

    Article  ADS  Google Scholar 

  23. A.C. Larsen, J.E. Midtbø et al., Phys. Rev. C 97, 054329 (2018)

    Article  ADS  Google Scholar 

  24. R. Surman et al., AIP Adv. 4, 041008 (2014)

    Article  ADS  Google Scholar 

  25. R.H. Cyburt et al., Astrophys. J. Suppl. Ser. 189, 240 (2010)

    Article  ADS  Google Scholar 

  26. A. Spyrou et al., J. Phys. G Nucl. Part. Phys. 44, 044002 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. C. L. gratefully acknowledges funding through ERC-STG-2014 under grant agreement no. 637686. Support from the ChETEC COST Action (CA16117), supported by COST (European Cooperation in Science and Technology) is acknowledged. This work was supported by the National Science Foundation under Grants No. PHY 1102511 (NSCL) and No. PHY 1430152 (JINA Center for the Evolution of the Elements), and PHY 1350234 (CAREER). This material is based upon work supported by the US Department of Energy National Nuclear Security Administration through under Award No. DE-NA0003180, No. DE-NA-0000979 and No. DE-NA-0003221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larsen, A.C. et al. (2019). The Beta-Oslo Method: Experimentally Constrained (\(n,\gamma \)) Reaction Rates Relevant to the r-Process. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_22

Download citation

Publish with us

Policies and ethics