Skip to main content

Neutron Star Mergers as r-Process Sources

  • Conference paper
  • First Online:
Nuclei in the Cosmos XV

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 219))

  • 795 Accesses

Abstract

The astrophysical origin of the rapid neutron capture elements has been a puzzle since the 1950s. While evidence for a compact binary merger origin has been growing over the last two decades, the final confirmation only came from the recent multi-messenger observation of a merging neutron star binary. The slope of the bolometric electromagnetic luminosity strongly suggests the radioactive decay of freshly synthesized r-process nuclei as power source. The spectral evolution from blue to red indicates that a broad range of r-process nuclei has been produced. Both the ejecta mass and the event rate from this first event are at the upper end of the pre-detection expectations. These number suggest that neutron star mergers are the major r-process source in the cosmos, but additional sources cannot be excluded and may even be welcome from a chemical evolution perspective. With the large number of neutron star detections expected per year for LIGO/VIRGO’s next science run one can be optimistic to soon get answers to questions that have plagued (nuclear) astrophysics for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data taken from https://kilonova.space.

References

  1. A.G.W. Cameron, Chalk River Rept. CRL-41 (1957)

    Google Scholar 

  2. E.M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  3. Committee On The Physics Of The Universe, D.O.E. Astronomy, Connecting Quarks with the Cosmos: 11 Science Questions for the New Century (2003)

    Google Scholar 

  4. K. Takahashi, J. Witti, H.T. Janka, Astron. Astrophys. 286, 857 (1994)

    ADS  Google Scholar 

  5. Y.Z. Qian, S.E. Woosley, Astrophys. J. 471, 331 (1996)

    Article  ADS  Google Scholar 

  6. R.D. Hoffman, S.E. Woosley, Y.Z. Qian, Astrophys. J. 482, 951 (1997)

    Article  ADS  Google Scholar 

  7. J.M. Lattimer, D.N. Schramm, Astrophys. J. (Lett.) 192, L145 (1974)

    Article  ADS  Google Scholar 

  8. J.M. Lattimer, D.N. Schramm, Astrophys. J. 210, 549 (1976)

    Article  ADS  Google Scholar 

  9. D. Eichler, M. Livio, T. Piran, D.N. Schramm, Nature 340, 126 (1989)

    Article  ADS  Google Scholar 

  10. B. Paczynski, Astrophys. J. Lett. 308, L43 (1986)

    Article  ADS  Google Scholar 

  11. S. Rosswog et al., in Nuclear Astrophysics, ed. by W. Hillebrandt, E. Muller (1998), p. 103

    Google Scholar 

  12. C. Freiburghaus, S. Rosswog, F.K. Thielemann, Astrophys. J. 525, L121 (1999)

    Article  ADS  Google Scholar 

  13. S. Rosswog et al., Astron. Astrophys. 341, 499 (1999)

    ADS  Google Scholar 

  14. L.X. Li, B. Paczyński, Astrophys. J. Lett. 507, L59 (1998)

    Article  ADS  Google Scholar 

  15. S.R. Kulkarni, ArXiv Astrophysics e-prints (2005)

    Google Scholar 

  16. B.D. Metzger et al., MNRAS 406, 2650 (2010)

    Article  ADS  Google Scholar 

  17. S. Rosswog, Astrophys. J. 634, 1202 (2005)

    Article  ADS  Google Scholar 

  18. L.F. Roberts et al., Astrophys. J. Lett. 736, L21 (2011)

    Article  ADS  Google Scholar 

  19. D. Kasen et al., Astrophys. J. 774, 25 (2013)

    Article  ADS  Google Scholar 

  20. J. Barnes, D. Kasen, Astrophys. J. 775, 18 (2013)

    Article  ADS  Google Scholar 

  21. D. Grossman et al., MNRAS 439, 757 (2014)

    Article  ADS  Google Scholar 

  22. S. Rosswog et al., MNRAS 439, 744 (2014)

    Article  ADS  Google Scholar 

  23. D. Kasen et al., MNRAS 450, 1777 (2015)

    Article  ADS  Google Scholar 

  24. R. Fernandez, B.D. Metzger, Ann. Rev. Nucl. Part. Sci. 66, 23 (2016)

    Article  ADS  Google Scholar 

  25. B.D. Metzger, Living Rev. Relativ. 20, 3 (2017)

    Article  ADS  Google Scholar 

  26. B.P. Abbott et al., Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  27. B.P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  28. M.M. Kasliwal, Science 358, 1559 (2017)

    Article  ADS  Google Scholar 

  29. S.J. Smartt, Nature 551, 75 (2017)

    Article  ADS  Google Scholar 

  30. A. Goldstein et al., Astrophys. J. Lett. 848, L14 (2017)

    Article  ADS  Google Scholar 

  31. G. Hallinan et al., Science 358, 1579 (2017)

    Article  ADS  Google Scholar 

  32. P.A. Evans et al., Science 358, 1565 (2017)

    Article  ADS  Google Scholar 

  33. B.P. Abbott et al., Astrophys. J. Lett. 848, L13 (2017)

    Article  ADS  Google Scholar 

  34. J.D. Lyman et al., Nat. Astron. 2, 751 (2018)

    Article  ADS  Google Scholar 

  35. K.P. Mooley et al., ArXiv e-prints (2018)

    Google Scholar 

  36. R. Margutti et al., Astrophys. J. Lett. 856, L18 (2018)

    Article  ADS  Google Scholar 

  37. S. Rosswog et al., Astron. Astrophys. 615, 132 (2018)

    Article  Google Scholar 

  38. O. Korobkin et al., MNRAS 426, 1940 (2012)

    Article  ADS  Google Scholar 

  39. M. Tanaka, K. Hotokezaka, Astrophys. J. 775, 113 (2013)

    Article  ADS  Google Scholar 

  40. D.A. Coulter et al., Science 358, 1556 (2017)

    Article  ADS  Google Scholar 

  41. M. Nicholl et al., Astrophys. J. Lett. 848, L18 (2017)

    Article  ADS  Google Scholar 

  42. C. McCully et al., Astrophys. J. Lett. 848, L32 (2017)

    Article  ADS  Google Scholar 

  43. N.R. Tanvir et al., Astrophys. J. Lett. 848, L27 (2017)

    Article  ADS  Google Scholar 

  44. D. Kasen et al., Nature 551, 80 (2017)

    Article  ADS  Google Scholar 

  45. S. Rosswog et al., Class. Quantum Gravity 34(10), 104001 (2017)

    Article  ADS  Google Scholar 

  46. M.U. Kruckow, T.M. Tauris, N. Langer, M. Kramer, R.G. Izzard, MNRAS (2018)

    Google Scholar 

  47. M. Chruslinska, K. Belczynski, J. Klencki, M. Benacquista, MNRAS 474, 2937 (2018)

    Article  ADS  Google Scholar 

  48. A. Vigna-Gómez et al., ArXiv e-prints, arXiv:1805.07974 (2018)

  49. K. Hotokezaka, T. Piran, M. Paul, Nat. Phys. 11, 1042 (2015)

    Article  Google Scholar 

  50. B. Côté et al., eprint arXiv:1809.03525 (2018)

  51. B.P. Abbott et al., Living Rev. Relativ. 21, 3 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Rosswog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosswog, S. (2019). Neutron Star Mergers as r-Process Sources. In: Formicola, A., Junker, M., Gialanella, L., Imbriani, G. (eds) Nuclei in the Cosmos XV. Springer Proceedings in Physics, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-030-13876-9_17

Download citation

Publish with us

Policies and ethics