Skip to main content

Pressure Blocking Effect in a Growing Vapor Bubble

  • Chapter
  • First Online:
Book cover Non-equilibrium Evaporation and Condensation Processes

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 609 Accesses

Abstract

The phenomenon of gas (vapor) bubbles in a liquid, in spite of the fluctuation character of their nucleation and the short lifetime, has a wide spectrum of manifestations: underwater acoustics, sonoluminescence, ultrasonic diagnostics, decreasing friction by surface nanobubbles, nucleate boiling, etc. (Lohse in Nonlinear Phenom Complex Syst 9:125–132, 2006 [1]). Such exotic manifestations of the bubble behavior as a micropiston injection of droplets in jet printing and the spiral rise path of bubbles in a liquid (the Leonardo da Vinci paradox) permitted the authors of (Straub in Adv Heat Transf 35:157–172, 2001) [2] to speak of “bubble puzzles.” The most important application of the bubble dynamics is the effervescence of a liquid superheated with respect to the saturation temperature. The liquid retains thereby the properties of the initial phase but becomes unstable (or metastable). The result of the demonstration of metastability of the liquid is the initiation and growth of nuclei of a new (vapor) phase in it. An ideal subject of investigation of this phenomenon is the spherically asymmetric growth of the vapor bubble in the volume of a uniformly superheated liquid. However, the experimental realization of such a process presents great challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\( a \) :

Heat diffusivity

\( c_{p} \) :

Specific heat capacity at constant pressure

\( {\text{Ja}} \) :

Jakob number

\( k \) :

Thermal conductivity

\( m\, \) :

Growth modulus

\( p \) :

Pressure

\( q \) :

Heat flux

\( R \) :

Bubble radius

\( R_{g} \) :

Individual gas constant

\( L \) :

Heat of phase transition

\( {\text{S}} \) :

Stefan number

\( T \) :

Temperature

\( t \) :

Time

\( \varepsilon \, \) :

Phase-density ratio

\( \rho \) :

Density

\( b \) :

State in a vapor bubble

\( {\text{cr}} \) :

State at the critical point

\( e \) :

State on energy spinodal

\( \hbox{max} \) :

Maximum (on spinodal)

\( \hbox{min} \) :

Minimum (on binodal)

\( {\text{v}} \) :

Vapor

\( s \) :

Saturation state

\( \infty \) :

State at infinity

\( * \) :

State at the pressure blocking point

References

  1. Prosperetti A (2004) Bubbles. Phys Fluids 16(6):1852–1865

    Article  MathSciNet  Google Scholar 

  2. Lohse D (2006) Bubble puzzles. Nonlinear Phenom Complex Syst 9(2):125–132

    Google Scholar 

  3. Straub J (2001) Boiling heat transfer and bubble dynamics in microgravity. Adv Heat Transf 35:157–172

    Google Scholar 

  4. Picker G (1998) Nicht-Gleichgewichts-Effekte beim Wachsen und Kondensieren von Dampfblasen, Dissertation, Technische Universitat München, München

    Google Scholar 

  5. Zudin YB (2015) Binary schemes of vapor bubble growth. J Eng Phys Thermophys 88(8.3):575–586

    Google Scholar 

  6. Labuntsov DA (1974) Current views on the bubble boiling mechanism. In: Heat transfer and physical hydrodynamics. Nauka, Moscow, pp 98–115 (in Russian)

    Google Scholar 

  7. Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10(1/2):1–14

    Article  Google Scholar 

  8. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25:493–500

    Article  MathSciNet  Google Scholar 

  9. Labuntsov DA, Yagov VV (1978) Mechanics of simple gas-liquid structures. Moscow Power Engineering Institute, Moscow (in Russian)

    Google Scholar 

  10. Mikic BB, Rosenow WM, Griffith P (1970) On bubble growth rates. Int J Heat Mass Transf 13:657–666

    Article  Google Scholar 

  11. Avdeev AA (2014) Laws of vapor bubble growth in the superheated liquid volume (thermal growth scheme). High Temp 40(2):588–602

    Article  Google Scholar 

  12. Aktershev SP (2004) Growth of a vapor bubble in an extremely superheated liquid. Thermophys Aeromech 12(8.3):445–457

    Google Scholar 

  13. Skripov VP (1974) Metastable liquid. Wiley, New York

    Google Scholar 

  14. Korabel’nikov AV, Nakoryakov VE, Shraiber IR (1981) Taking account of nonequilibrium evaporation in the problems of the vapor bubble dynamics. High Temp 19(8.4):586–590

    Google Scholar 

  15. Vukalovich MP, Novikov II (1948) Equation of state of real gases. Gosenergoizdat, Moscow (in Russian)

    MATH  Google Scholar 

  16. Reid RC, Prausnitz JM, Poling BE (1988) The properties of gases and liquids, 4th edn. McGraw-Hill Education, Singapore

    Google Scholar 

  17. Novikov II (2000) Thermodynamics of spinodal and phase transitions. Nauka, Moscow (in Russian)

    Google Scholar 

  18. Boiko VG, Mogel KJ, Sysoev VM, Chalyi AV (1991) Characteristic features of the metastable states in liquid-vapor phase transitions. Usp Fiz Nauk 161(8.2):77–111 (in Russian)

    Google Scholar 

  19. Thormahlen I (1985) Grenze der Überhitzbarkeit von Flüssigkeiten: Keimbildung und Keimaktivierung, Fortschritt-Berichte VDI. Verfahrenstechnik. VDI-Verlag, Düsseldorf, Reihe 3, Nr. 104

    Google Scholar 

  20. Wiesche S (2000) Modellbildung und Simulation thermofluidischer Mikroaktoren zur Mikrodosierung, Fortschritt-Berichte VDI. Wärmetechnik/Kältetechnik. VDI-Verlag, Düsseldorf, Reihe 19, Nr. 131

    Google Scholar 

  21. Shepherd JE, Sturtevant B (1982) Rapid evaporation at the superheat limit. J FluidMech 121:379–402

    Article  Google Scholar 

  22. Weigand B (2015) Analytical methods for heat transfer and fluid flow problems, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  23. Labuntsov DA, Yagov VV (1975) Dynamics of vapor bubbles in the low-pressure region. Tr. MEI 268:16–32 (in Russian)

    Google Scholar 

  24. Yagov VV (1988) On the limiting law of growth of vapor bubbles in the region of very low pressures (high Jacob numbers). High Temp 26(8.2):251–257

    Google Scholar 

  25. Theofanous TG, Bohrer TG, Chang MC, Patel PD (1978) Experiments and universal growth relations for vapor bubbles with microlayers. J Heat Transf 100:41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2019). Pressure Blocking Effect in a Growing Vapor Bubble. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-13815-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13815-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13814-1

  • Online ISBN: 978-3-030-13815-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics