Skip to main content

Approximate Kinetic Analysis of Strong Evaporation

  • Chapter
  • First Online:
Non-equilibrium Evaporation and Condensation Processes

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 622 Accesses

Abstract

The knowledge of the laws governing intense evaporation is important for vacuum technologies, exposure of materials to laser radiation, outflow of a coolant on loss of sealing in the protective envelope of an atomic power plant, and for other applications. The problem of evaporation from a condensed phase surface into a half-space filled with vapor represents a boundary-value problem for the gas dynamics equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BC:

Boundary conditions

CPS:

Condensed-phase surface

DF:

Distribution function

References

  1. Kogan MN (1969) Rarefied gas dynamics. Plenum, New York

    Book  Google Scholar 

  2. Muratova TM, Labuntsov DA (1969) Kinetic analysis of evaporation and condensation processes. High Temp 7(5):959–967

    Google Scholar 

  3. Labuntsov DA (2000) Physical foundations of power engineering. Selected works, Moscow Power Energetic Univ. (Publ.). Moscow (in Russian)

    Google Scholar 

  4. Labuntsov DA, Kryukov AP (1977) Processes of intense evaporation. Therm Eng (4): 8–11

    Google Scholar 

  5. Bobylev AV (1987) Exact and approximate methods in the theory of nonlinear and kinetic Boltzmann and Landau equations. Keldysh Institute Preprints, Moscow (in Russian)

    Google Scholar 

  6. Aristov VV, Zabelok SA (2010) Application of direct methods of solving Boltzmann equations for modeling nonequilibrium phenomena in gases. Computing Center of the Russian Academy of Sciences, Moscow (in Russian)

    Google Scholar 

  7. Pao YP (1971) Temperature and density jumps in the kinetic theory of gases and vapors. Phys Fluids 14:1340–1346

    Article  MathSciNet  Google Scholar 

  8. Pao YP (1973) Erratum: temperature and density jumps in the kinetic theory of gases and vapors. Phys Fluids 16:1650

    Article  Google Scholar 

  9. Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183

    Google Scholar 

  10. Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 2(7):989–1002

    Article  Google Scholar 

  11. Zhakhovskii VV, Anisimov SI (1997) Molecular-dynamics simulation of evaporation of a liquid. J Exp Theor Phys 84(4):734–745

    Article  Google Scholar 

  12. Frezzotti A (2007) A numerical investigation of the steady evaporation of a polyatomic gas. Eur J Mech B Fluids 26:93–104

    Article  MathSciNet  Google Scholar 

  13. Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14:4242–4255

    Article  MathSciNet  Google Scholar 

  14. Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875

    Article  Google Scholar 

  15. Hertz H (1882) Über die Verdünstung der Flüssigkeiten, inbesondere des Quecksilbers, im luftleeren Räume. Ann Phys Chem 17:177–200

    Article  Google Scholar 

  16. Knudsen M (1934) The kinetic theory of gases. Methuen, London

    MATH  Google Scholar 

  17. Cercignani C (1981) Strong evaporation of a polyatomic gas. In: Fisher SS (ed) Rarefied gas dynamics, Part 1, AIAA, vol 1, pp 305–310

    Google Scholar 

  18. Skovorodko PA (2001) Semi-empirical boundary conditions for strong evaporation of a polyatomic gas. In Proceedings of AIP Conference, vol, 585. American Institute of Physics, New York, pp 588–590

    Google Scholar 

  19. Kogan MN, Makashev NK (1971) On the role of Knudsen layer in the theory of heterogeneous reactions and in flows with surface reactions. Izv Akad Nauk SSSR, Mekh Zhidk Gaza 6:3–11 (in Russian)

    Google Scholar 

  20. Anisimov SI, Rakhmatullina A (1973) Dynamics of vapor expansion on evaporation into vacuum. Zh Eksp Teor Fiz 64(3):869–876 (in Russian)

    Google Scholar 

  21. Landau LD, Lifshitz EM (1959) Fluid mechanics (Volume 6 of a course of theoretical physics). Pergamon Press

    Google Scholar 

  22. Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022

    Article  Google Scholar 

  23. Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84

    Article  Google Scholar 

  24. Zudin YB (2016) Linear kinetic analysis of evaporation and condensations. Thermophys Aeromech 23(3):437–449

    Article  Google Scholar 

  25. Maxwell JC (1860) Illustrations of the dynamical theory of gases: part I. On the motions and collisions of perfectly elastic spheres. Philos Mag 19:19–32

    Article  Google Scholar 

  26. Maxwell JC (1860) Illustrations of the dynamical theory of gases: part II. On the process of diffusion of two or more kinds of moving particles among one another. Philos Mag 20:21–37

    Article  Google Scholar 

  27. Langmuir I (1913) Chemical reactions at very low pressures. II. The chemical cleanup of nitrogen in a tungsten lamp. J Am Chem Soc 35:931–945

    Article  Google Scholar 

  28. Gerasimov DN, Yurin EI (2017) Potential energy distribution function and its application to the problem of evaporation. J Phys Conf Ser 891:012005

    Article  Google Scholar 

  29. Marek R, Straub J (2001) Analysis of the evaporation coefficient and the condensation coefficient of water. Int J Heat Mass Transf 44:39–53

    Article  Google Scholar 

  30. Kryukov AP, Levashov VY (2011) About evaporation-condensation coefficients on the vapor-liquid interface of high thermal conductivity matters. Int J Heat Mass Transf 54(13–14):3042–3048

    Article  Google Scholar 

  31. Labuntsov DA (1977) Vapor-liquid flows. Luikov Heat and Mass Transfer Institute. Minsk (in Russian)

    Google Scholar 

  32. Bond M, Struchtrup H (2004) Mean evaporation and condensation coefficient based on energy dependent condensation probability. Phys Rev E 70:061605

    Article  Google Scholar 

  33. Hołyst R, Litniewski M, Jakubczyk D (2015) A molecular dynamics test of the Hertz-Knudsen equation for evaporating liquids. Soft Matter 11(36):7201–7206. https://doi.org/10.1039/c5sm01508a

    Article  Google Scholar 

  34. Zudin Yuri B (2018) Non-equilibrium evaporation and condensation processes: analytical solutions. Springer, Heidelberg

    Book  Google Scholar 

  35. Zeldovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation, North Chelmsford

    Google Scholar 

  36. Ytrehus T (1977) Theory and experiments on gas kinetics in evaporation. In: Potter JL (ed) Rarefied gas dynamics N.Y. vol 51, issues 2, pp 1197–1212

    Google Scholar 

  37. Khight CJ (1979) Theoretical modeling of Rapid Surface vaporization with Back pressure. AIAA J 17(5):519–523

    Article  Google Scholar 

  38. Khight CJ (1982) Transient vaporization from a surface into vacuum. AIAA J 20(7):950–955

    Article  Google Scholar 

  39. Kelly R, Miotello A (1994) Laser-pulse sputtering of atoms and molecules. Part II. Recondensation effects. Nucl Instr Meth B 91:682–691

    Article  Google Scholar 

  40. Jeong H, Greif R, Russo RE (1999) Shock wave and material vapour plume propagation during excimer laser ablation of aluminium samples. J Phys D 32:2578–2585

    Article  Google Scholar 

  41. Chen KR, Leboeuf JN, Wood RF, Geohegan DB, Donato JM, Liu CL, Puretzky AA (1996) Mechanisms affecting kinetic energies of laser-ablated materials. J Vac Sci Technol A Vac Surf Films 14(3):1111–1114

    Article  Google Scholar 

  42. Bulgakov AV, Bulgakova NM (1998) Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: analogy with an under expanded jet. J Phys D 31:693–703

    Article  Google Scholar 

  43. Ho JR, Grigoropoulos CP, Humphrey JAC (1995) Computational study of heat transfer and gas dynamics in the pulsed laser evaporation of metals. J Appl Phys 78(6):4696–4709

    Article  Google Scholar 

  44. Gusarov AV, Gnedovets AG, Smurov I (2000) Gas dynamics of laser ablation: influence of ambient atmosphere. J Appl Phys 88:4352–4364

    Article  Google Scholar 

  45. Goodman TR (1964) Application of integral methods in transient non-linear heat transfer. In: Irvine TF, Hartnett JP (eds) Advances in heat transfer, vol 1. Academic Press, New York. pp 51–122

    Google Scholar 

  46. Öziúik NM (1989) Boundary value problems of heat conduction. Dover Publications Inc., New York

    Google Scholar 

  47. Langford D (1973) The heat balance integral method. Int J Heat Mass Transf 16:2324–2328

    Article  Google Scholar 

  48. Tsoi PV (2001) Problem of Heat transfer with allowance for axial heat conduction for the flow of a liquid in tubes and channels. J Eng Phys Thermophys 74(1):183–191

    Article  Google Scholar 

  49. Incropera FP, Dewitt DP (1996) Fundamentals of heat and mass transfer. J Wiley

    Google Scholar 

  50. Kreith FB, Mark S (2001) Principles of heat transfer. Brooks/Cole

    Google Scholar 

  51. Schlichting H (1974) Boundary layer theory. McGraw-Hill, New York

    MATH  Google Scholar 

  52. Wang L, Zhou X, We X (2007) Heat conduction: mathematical models and analytical solutions. Springer Science & Business Media

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2019). Approximate Kinetic Analysis of Strong Evaporation. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-13815-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13815-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13814-1

  • Online ISBN: 978-3-030-13815-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics