Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 805))

  • 346 Accesses

Abstract

In several situations, we are interested in computing the range not only of a specific function, but also its derivative(s). This is the case for virtually all problems considered in this book: for optimization problems, nonlinear equations, seeking Pareto-sets of multicriteria problems, etc.; shortly: whenever we need to apply the interval Newton operator or enforce box-consistency (or use other similar tools). This chapter reviews main manners to bound the derivatives; the focus is on algorithmic differentiation, which turned out to be a very useful tool and (unlike, e.g., using finite-differences) it is compatible with the interval analysis. The author’s library ADHC is briefly presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C++ eXtended Scientific Computing library (2015). http://www.xsc.de

  2. ADHC, C++ library (2017). https://www.researchgate.net/publication/316610415_ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05

  3. Boost C++ libraries (2017). http://www.boost.org/

  4. C++ documentation for std::any (2017). http://en.cppreference.com/w/cpp/utility/any

  5. HIBA\_USNE, C++ library (2017). https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25

  6. ADOL-C: ADOL-C library (2016)

    Google Scholar 

  7. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-Wesley (2001)

    Google Scholar 

  8. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (2004)

    Google Scholar 

  9. Hoffmann, P.H.: A hitchhiker’s guide to automatic differentiation. Numer. Algorithms 72(3), 775–811 (2016)

    Google Scholar 

  10. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer, London (2001)

    Google Scholar 

  11. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)

    Google Scholar 

  12. Krämer, W., Zimmer, M., Hofschuster, W.: Using C-XSC for high performance verified computing. In: PARA 2010 Proceedings. Lecture Notes in Computer Science, vol. 7134, pp. 168–178 (2012)

    Google Scholar 

  13. Kubica, B.J.: Advanced interval tools for computing solutions of continuous games. Vychislennyie Tiehnologii (Computational Technologies) 23(1), 3–18 (2018)

    Google Scholar 

  14. Kubica, B.J., Kurek, J.: Interval arithmetic, hull-consistency enforcing and algorithmic differentiation using a template-based package. In: CPEE 2018 Proceedings (2018)

    Google Scholar 

  15. Kubica, B.J., Woźniak, A.: A multi-threaded interval algorithm for the Pareto-front computation in a multi-core environment. In: PARA 2008 Proceedings. Lecture Notes in Computer Science, vol. 6126/6127. Accepted for Publication (2010)

    Google Scholar 

  16. Nedialkov, N., Kreinovich, V., Starks, S.A.: Interval arithmetic, affine arithmetic, Taylor series methods: why, what next? Numer. Algorithms 37(1), 325–336 (2004)

    Google Scholar 

  17. Shary, S.P.: Finite-dimensional Interval Analysis. Institute of Computational Technologies, SB RAS, Novosibirsk (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Jacek Kubica .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubica, B.J. (2019). Bounding Derivatives by Algorithmic Differentiation. In: Interval Methods for Solving Nonlinear Constraint Satisfaction, Optimization and Similar Problems. Studies in Computational Intelligence, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-030-13795-3_3

Download citation

Publish with us

Policies and ethics