Basic Concepts of Probability Theory

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Part of the Universitext book series (UTX)


Thanks to Newton’s laws, dropping a stone from a height of 10 m, the point of time of its impact on the ground is known before executing the experiment.


  1. Durrett, R. (1991). Probability: theory and examples. Belmont, CA: Wadsworth and Brooks/Cole.zbMATHGoogle Scholar
  2. Jacod, J., & Protter, P. (2000). Probability essentials. Heidelberg: Springer.CrossRefGoogle Scholar
  3. Krengel, U. (2000). Einführung in die Wahrscheinlichkeitstheorie und Statistik. Braunschweig: Vieweg.CrossRefGoogle Scholar
  4. Pitman, J. (1997). Probability. Heidelberg: Springer-Verlag.zbMATHGoogle Scholar
  5. Ross, S. (1994). A first course in probability. New York: Macmillan.Google Scholar
  6. Williams, D. (1991). Probability with martingales. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations