Introduction to Option Management

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Part of the Universitext book series (UTX)


In this section we consider the fundamental notion of no-arbitrage. An arbitrage opportunity arises if it is possible to make a riskless profit.


  1. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654.MathSciNetCrossRefGoogle Scholar
  2. Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3, 145–166.CrossRefGoogle Scholar
  3. Das, S. (1997). Risk management and financial derivatives. New York: McGraw-Hill.CrossRefGoogle Scholar
  4. Elton, E., Gruber, M., Brown, S., & Goztmann, W. (2002). Modern portfolio theory and investment analysis. Wiley & Sons.Google Scholar
  5. Hull, J. C. (2006). Options, futures and other derivatives. Prentice Hall.Google Scholar
  6. Leland, H. (1980). Who should buy portfolio insurance. Journal of Finance, 35, 581–594.CrossRefGoogle Scholar
  7. Merton, R. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.MathSciNetCrossRefGoogle Scholar
  8. Ross, S., Westerfield, R., & Jaffe, J. (2005). Corporate finance. McGraw-Hill.Google Scholar
  9. Yan, J. (1999). Martingale approach to option pricing - a brief review with examples. Beijing: Institute of Applied Mathematics, Academia Sinica.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations