Time Series with Stochastic Volatility

  • Jürgen Franke
  • Wolfgang Karl Härdle
  • Christian Matthias Hafner
Part of the Universitext book series (UTX)


In the previous chapters we have already discussed that volatility plays an important role in modelling financial systems and time series. Unlike the term structure, volatility is unobservable and thus must be estimated from the data.


  1. Applebaum, D. (2004). Lévy processes and stochastic calculus. Cambridge University Press.CrossRefGoogle Scholar
  2. Bauwens, L., Laurent, S., & Rombouts, J. (2005). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21, 79–109.MathSciNetCrossRefGoogle Scholar
  3. Bertoin, J. (1996). Lévy processes. Cambridge University Press.zbMATHGoogle Scholar
  4. Black, F. (1976). Studies in stock price volatility changes. In Proceedings of the 1976 Meeting of the Business and Economic Statistics Section. American Statistical Association, pp. 177–181.Google Scholar
  5. Bollerslev, T., Engle, R., & Wooldridge, J. (1988). A capital asset pricing model with time varying covariances. Journal of Political Economy, 96, 116–131.CrossRefGoogle Scholar
  6. Bollerslev, T. P. (1986b). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307–327.MathSciNetCrossRefGoogle Scholar
  7. Bollerslev, T. P. (1990). Modelling the coherence in short-run nominal exchange rates: A multivariate generalized arch model. Review of Economics and Statistics, 72, 498–505.CrossRefGoogle Scholar
  8. Bollerslev, T. P., & Wooldridge, J. M. (1992). Quasi maximum likelihood estimation of dynamic models with time-varying covariances. Econometric Reviews, 11, 143–172.MathSciNetCrossRefGoogle Scholar
  9. Brockwell, P. J., Chadraa, E., & Lindner, A. (2006). Continuous time GARCH processes. Annals of Applied Probability, 16, 790–826.MathSciNetCrossRefGoogle Scholar
  10. Buchmann, B., & Müller, G. (2008). Limit experiments of GARCH. Technical report. Monash University and Technische Universität München.Google Scholar
  11. Comte, F., & Lieberman, O. (2003). Asymptotic theory for multivariate GARCH processes. Journal of Multivariate Analysis, 84(1), 61–84.MathSciNetCrossRefGoogle Scholar
  12. Czado, C., & Haug, S. (2007). Quasi maximum likelihood estimation and prediction in the compound poisson ECOGARCH(1,1) model. Technical report. Technische Universität München.Google Scholar
  13. Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1, 83–106.CrossRefGoogle Scholar
  14. Duan, J.-C. (1997). Augmented GARCH(p,q) process and its diffusion limit. Journal of Econometrics, 79, 97–127.MathSciNetCrossRefGoogle Scholar
  15. Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  16. Engle, R. F. (1982a). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.MathSciNetCrossRefGoogle Scholar
  17. Engle, R. F. (2002). Dynamic conditional correlation - a simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20, 339–350.MathSciNetCrossRefGoogle Scholar
  18. Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating time varying risk premia in the term structure: The ARCH-M model. Econometrica, 55, 391–407.CrossRefGoogle Scholar
  19. Engle, R. F., & Ng, V. K. (1993a). Measuring and testing the impact of news on volatility. Journal of Finance, 48, 1749–1778.CrossRefGoogle Scholar
  20. Engle, R., & Kroner, F. (1995). Multivariate simultaneous generalized arch. Econometric theory, 11, 122–150.MathSciNetCrossRefGoogle Scholar
  21. Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105.CrossRefGoogle Scholar
  22. Fasen, V., Klüppelberg, C., & Lindner, A. (2005). Extremal behavior of stochastic volatility models. In A. N. Shiryaev, M. R. Grossinho, P. E. Oliviera, & M. L. Esquível (Eds.), Stochastic finance. Springer.Google Scholar
  23. Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relationship between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.CrossRefGoogle Scholar
  24. Gouriéroux, C. (1997). ARCH models and financial applications. Springer-Verlag.CrossRefGoogle Scholar
  25. Gouriéroux, C., & Monfort, A. (1992). Qualitative threshold ARCH models. Journal of Econometrics, 52, 159–199.MathSciNetCrossRefGoogle Scholar
  26. Gouriéroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 681–700.MathSciNetCrossRefGoogle Scholar
  27. Hafner, C., & Herwartz, H. (2000). Testing linear autoregressive dynamics under heteroskedasticity. Econometrics Journal, 3, 177–197.MathSciNetCrossRefGoogle Scholar
  28. Hafner, C. M., & Herwartz, H. (2008). Analytical quasi maximum likelihood inference in multivariate volatility models. Metrika, 67, 219–239.MathSciNetCrossRefGoogle Scholar
  29. Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). Non- and semiparametric modelling. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  30. Haug, S., & Czado, C. (2007). An exponential continuous time GARCH process. Journal of Applied Probability, 44, 960–976.MathSciNetCrossRefGoogle Scholar
  31. Haug, S., Klüppelberg, C., Lindner, A., & Zapp, M. (2007). Method of moments estimation in the COGARCH(1,1) model. Econometrics Journal, 10, 320–341.MathSciNetCrossRefGoogle Scholar
  32. Haug, S., & Stelzer, R. (2010). Multivariate ECOGARCH processes. Econometric Theory.Google Scholar
  33. He, C., & Teräsvirta, T. (1999). Properties of moments of a family of GARCH processes. Journal of Econometrics, 92, 173–192.MathSciNetCrossRefGoogle Scholar
  34. Hill, B. (1975). A simple general approach to inference about the tail of a distribution. Annals of Statistics, 3, 1163–1174.MathSciNetCrossRefGoogle Scholar
  35. Jeantheau, T. (1998). Strong consistency of estimators for multivariate arch models. Econometric Theory, 14, 70–86.MathSciNetCrossRefGoogle Scholar
  36. Kallsen, J., & Vesenmayer, B. (2009). COGARCH as a continuous-time limit of GARCH(1,1). Stochastic Processes and Their Applications, 119, 74–98.MathSciNetCrossRefGoogle Scholar
  37. Klüppelberg, C., Lindner, A., & Maller, R. A. (2004). A continuous-time GARCH process driven by a lévy process: stationarity and second-order behaviour. Journal of Applied Probability, 41, 601–622.MathSciNetCrossRefGoogle Scholar
  38. Klüppelberg, C., Lindner, A., & Maller, R. A. (2006). Continuous time volatility modelling: COGARCH versus ornsteinuhlenbeck models. In Y. Kabanov, R. Lipster, & J. Stoyanov (Eds.), From stochastic calculus to mathematical finance. Springer.Google Scholar
  39. Lee, S., & Hansen, B. (1994). Asymptotic theory for the GARCH(1,1) quasi-maximum likelihood estimator. Econometric Theory, 10, 29–52.MathSciNetCrossRefGoogle Scholar
  40. Lubrano, M. (1998). Smooth transition GARCH models: A Bayesian perspective. Technical report. CORE, Louvain-la-Neuve.Google Scholar
  41. Lumsdaine, R. (1996). Consistency and asymptotic normality of the quasi maximum likelihood estimator in IGARCH(1,1) and covariance stationary GARCH(1,1) models. Econometrica, 64, 575–596.MathSciNetCrossRefGoogle Scholar
  42. Maercker, G. (1997). Statistical inference in conditional heteroskedastic autoregressive models. Aachen: Shaker Verlag.Google Scholar
  43. Maller, R. A., Müller, G., & Szimayer, A. (2008). GARCH modelling in continuous time for irregularly spaced time series data. Bernoulli, 14, 519–542.MathSciNetCrossRefGoogle Scholar
  44. Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.CrossRefGoogle Scholar
  45. Mikosch, T., & Starica, C. (2004). Non-stationarities in financial time series, the long range dependence and the IGARCH effects. Review of Economics and Statistics, 86(1), 389–390.CrossRefGoogle Scholar
  46. Müller, G. (2010). MCMC estimation of the COGARCH(1,1) model. Journal of Financial Econometrics, 1, 1–30.Google Scholar
  47. Nelson, D. B. (1990a). Stationarity and persistence in the GARCH(1,1) model. Econometric Theory, 6, 318–334.MathSciNetCrossRefGoogle Scholar
  48. Nelson, D. B. (1990b). Arch models as diffusion approximations. Journal of Econometrics, 45, 7–38.MathSciNetCrossRefGoogle Scholar
  49. Nelson, D. B. (1991a). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59, 347–370.MathSciNetCrossRefGoogle Scholar
  50. Protter, P. E. (2005). Stochastic integration and differential equations. Springer.CrossRefGoogle Scholar
  51. Rabemananjara, R., & Zakoian, J. M. (1993). Threshold ARCH models and asymmetries in volatility. Journal of Applied Econometrics, 8, 31–49.CrossRefGoogle Scholar
  52. Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge University Press.zbMATHGoogle Scholar
  53. Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility models. In D. R. Cox, D. V. Hinkley, & O. E. Barndorff-Nielsen (Eds.), Time series models in econometrics, finance and other fields. London: Chapman & Hall.Google Scholar
  54. Starica, C. (2003). Is GARCH(1,1) as good a model as the accolades of the Nobel prize would imply? working paper.Google Scholar
  55. Stelzer, R. (2009). First jump approximation of a lévy-driven SDE and an application to multivariate ECOGARCH processes. Stochastic Processes and Their Applications, 119, 1932–1951.MathSciNetCrossRefGoogle Scholar
  56. Stelzer, R. (2010). Multivariate COGARCH(1,1) processes. Bernoulli, 16, 80–115.MathSciNetCrossRefGoogle Scholar
  57. Szimayer, A., & Maller, R. A. (2007). Finite approximation schemes for lévy processes, and their application to optimal stopping problems. Stochastic Processes and Their Applications, 117, 1422–1447.MathSciNetCrossRefGoogle Scholar
  58. Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89, 208–218.zbMATHGoogle Scholar
  59. Tsay, R. S. (2002). Analysis of financial time series. Wiley.CrossRefGoogle Scholar
  60. Tse, Y. K., & Tsui, A. (2002). A multivariate GARCH model with time-varying correlations. Journal of Business and Economic Statistics, 20, 351–362.MathSciNetCrossRefGoogle Scholar
  61. Wand, M., & Jones, M. (1995). Kernel smoothing. London: Chapman and Hall.CrossRefGoogle Scholar
  62. Wang, Y. (2002). Asymptotic nonequivalence of GARCH models and diffusions. The Annals of Statistics, 30, 754–783.MathSciNetCrossRefGoogle Scholar
  63. Weiss, A. A. (1986). Asymptotic theory for ARCH models: Estimation and testing. Econometric Theory, 2, 107–131.CrossRefGoogle Scholar
  64. White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.MathSciNetCrossRefGoogle Scholar
  65. Zakoian, J. M. (1991). Threshold heteroskedastic models. Technical report. INSEE.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jürgen Franke
    • 1
  • Wolfgang Karl Härdle
    • 2
  • Christian Matthias Hafner
    • 3
  1. 1.Department of MathematicsTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Ladislaus von Bortkiewicz Chair of StatisticsHumboldt-Universität BerlinBerlinGermany
  3. 3.Louvain Institute of Data Analysis and Modeling in Economics and StatisticsUCLouvainLouvain-la-NeuveBelgium

Personalised recommendations