Skip to main content

What Does Musculoskeletal Mechanics Tell Us About Evolution of Form and Function in Vertebrates?

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Functional loading generates stress and strain within the skeleton. Deducing how the skull stresses and strains has the potential to inform on what feeding and other behavioural loads the skeleton can withstand and the functional consequences of changes to shape. When applied in deep time, mechanical analysis of the skeleton may be used to determine the function of extinct organisms but also higher level questions such as niche partitioning, the evolutionary relationship between form, function and disparity, rates of functional evolution and the influence of constraints on morphological evolution. One method for deducing stress and strain in complex structures is finite element (FE) analysis. FE models have the potential to address questions of the evolution of form and function in vertebrates, but it is important to consider the assumptions and potential errors involved in creating and analysing FE simulations of function and behaviour. Currently lacking is an understanding of phylogenetic variability in various FE model input parameters such as bone material properties, muscle stress and adductor muscle pennation and fibre lengths. How within-species mechanical function relates to across-species function is still largely unknown. However, if the accuracy of an FE model can be estimated, then it is possible to frame appropriate questions to test long-standing functional hypotheses and deduce pattern and process in the relationship between form and function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander RM (1985) The ideal and the feasible: physical constraints on evolution. Biol J Lin Soc 26:345–358

    Google Scholar 

  • Alfaro ME, Bolnick DI, Wainwright PC (2004) Evolutionary dynamics of complex biomechanical systems: an example using the four-bar mechanism. Evolution 58:495–503

    PubMed  Google Scholar 

  • Alfaro ME, Bolnick DI, Wainwright PC (2005) Evolutionary consequences of many-to-one mapping of jaw morphology to mechanics in labrid fishes. Am Nat 165:E140–E154

    PubMed  Google Scholar 

  • Anderson PSL, Friedman M, Brazeau MD, Rayfield EJ (2011) Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476:206–209

    CAS  Google Scholar 

  • Anderson PSL, Renaud S, Rayfield EJ (2014) Adaptive plasticity in the mouse mandible. BMC Evol Biol 14:85

    PubMed  PubMed Central  Google Scholar 

  • Andersson K, Norman D, Werdelin L (2011) Sabretoothed carnivores and the killing of large prey. PLoS One 6(10):e24971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angst D, Lécuyer C, Amiot R, Buffetaut E, Fourel F, Martineau F, Legendre S, Abourachid A, Herrel A (2014) Isotopic and anatomical evidence of an herbivorous diet in the early tertiary giant bird Gastornis. Implications for the structure of Paleocene terrestrial ecosystems. Naturwissenschaften 101:313–322

    CAS  PubMed  Google Scholar 

  • Barrett PM (2014) Paleobiology of herbivorous dinosaurs. Annu Rev Earth Planet Sci 42:207–230

    CAS  Google Scholar 

  • Bates KT, Falkingham PL (2012) Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics. Biol Let 8:660–664

    CAS  Google Scholar 

  • Bates KT, Falkingham PL (2018) The importance of muscle architecture in biomechanical reconstructions of extinct animals: a case study using Tyrannosaurus rex. J Anat. https://doi.org/10.1111/joa.12874

    PubMed  Google Scholar 

  • Bates KT, Mannion PD, Falkingham PL, Brusatte SL, Hutchinson JR, Otero A, Sellers WI, Sullivan C, Stevens KA, Allen V (2016) Temporal and phylogenetic evolution of the sauropod dinosaur body plan. R Soc Open Sci 3:150636

    PubMed  PubMed Central  Google Scholar 

  • Benson RBJ, Butler RJ (2011) Uncovering the diversification history of marine tetrapods: ecology influences the effect of geological sampling biases, vol 358. Geological Society of London Special Publication, pp 191–207

    Google Scholar 

  • Benton MJ, Dunhill AM, Lloyd GT, Marx FG (2011) Assessing the quality of the fossil record: insights from vertebrates, vol 358. Geological Society of London, Special Publication, pp 63–94

    Google Scholar 

  • Bertram JEA, Swartz SM (1991) The ‘Law of Bone Transformation’: a case of crying Wolff? Biol Rev 66:245–273

    CAS  PubMed  Google Scholar 

  • Betti BF, Everts V, Ket JCF, Tabeian H, Bakker AD, Langenback GE, Lobbezoo F (2018) Effect of mechanical loading on the metabolic activity of cells in the temporomandibular joint: a systematic review. Clin Oral Invest 22:57–67

    Google Scholar 

  • Biewener AA (2003) Animal Locomotion. Oxford University Press, Oxford, p 281

    Google Scholar 

  • Blits KC (1999) Aristotle: form, function, and comparative anatomy. Anat Rec 257:58–63

    CAS  PubMed  Google Scholar 

  • Bright JA (2012) The importance of craniofacial sutures in biomechanical finite element models of the domestic pig. PLoS One 7(2):e31769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bright JA (2014) A review of paleontological finite element models and their validity. J Paleontol 88:760–769

    Google Scholar 

  • Bright JA, Gröning F (2011) Strain accommodation in the zygomatic arch of the pig: a validation study using digital speckle pattern interferometry and finite element analysis. J Morphol 272:1388–1398

    PubMed  Google Scholar 

  • Bright JA, Rayfield EJ (2011) The response of cranial biomechanical finite element models to variations in mesh density. Anat Rec 294:610–620

    Google Scholar 

  • Broeckhoven C, du Plessis A (2017) Has snake fang evolution lost its bite? New insights from a structural mechanics viewpoint. Biol Let 13:20170293

    Google Scholar 

  • Brunt LH, Norton JL, Bright KA, Rayfield EJ, Hammond CL (2015) Finite element modelling predicts changes in joint shape and cell behaviour due to loss of muscle strain in jaw development. J Biomech 48:3112–3122

    PubMed  PubMed Central  Google Scholar 

  • Bryant HN & Russell AP (1992) The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philos Trans R Soc Lond Ser B 337:405–418

    Google Scholar 

  • Busbey AB (1995) The structural consequences of skull flattening in crocodilians. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 173–192

    Google Scholar 

  • Button DJ, Rayfield EJ, Barrett PM (2014) Cranial biomechanics underpins high sauropod diversity in resource-poor environments. Proc R Soc Ser B 281:20142114

    PubMed  Google Scholar 

  • Button DJ, Barrett PM, Rayfield EJ (2016) Comparative cranial myology and biomechanics of Plateosaurus and Camarasaurus and the evolution of the sauropod feeding apparatus. Palaeontology 59(6):887–913

    Google Scholar 

  • Button DJ, Barrett PM, Rayfield EJ (2017) Craniodental functional evolution in Sauropodomorpha dinosaurs. Paleobiology 43:435–462

    Google Scholar 

  • Carter DR, Beaupré (2001) Skeletal function and form: mechanobiology of skeletal development, aging and regeneration. Cambridge University Press, Cambridge, pp 318

    Google Scholar 

  • Chamoli U, Wroe S (2011) Allometry in the distribution of material properties and geometry of the felid skull: why larger species may need to change and how they may achieve it. J Theor Biol 283:217–226

    PubMed  Google Scholar 

  • Chure D, Britt BB, Whitlock JA, Wilson JA (2010) First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition. Naturwissenschaften 97:379–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox PG, Fagan MJ, Rayfield EJ, Jeffery N (2011) Finite element modelling of squirrel, guinea pig and rat skulls: using geometric morphometrics to assess sensitivity. J Anat 219:696–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuff AR, Bright JA, Rayfield EJ (2015) Validation experiments on finite element models of an ostrich (Struthio camelus) cranium. PeerJ 3:e1294

    PubMed  PubMed Central  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton, p 436

    Google Scholar 

  • Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495

    CAS  PubMed  Google Scholar 

  • Currey JD, Alexander RM (1985) The thickness of the walls of tubular bones. J Zool 206:453–468

    Google Scholar 

  • Curtis N (2011) Craniofacial biomechanics: an overview of recent multibody modelling studies. J Anat 218:16–25

    PubMed  Google Scholar 

  • Curtis N, Jones MEH, Evans SE, O’Higgins P, Fagan MJ (2013) Cranial sutures work collectively to distribute strain throughout the reptile skull. J R Soc Interface 10:20130442

    PubMed  PubMed Central  Google Scholar 

  • D’Emic MD, Whitlock JA, Smith KM, Fisher DC, Wilson JA (2013) Evolution of high tooth replacement rates in sauropod dinosaurs. PLoS One 8:e69235

    PubMed  PubMed Central  Google Scholar 

  • Daegling DJ, Hylander WL (2000) Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form. Am J Phys Anthropol 112:541–551

    CAS  PubMed  Google Scholar 

  • Enomoto A, Watahiki J, Nampo T, Irie T, Ichikawa Y, Tachikawa T, Maki K (2014) Mastication markedly affects mandibular condylar cartilage growth, gene expression and morphology. Am J Orthod Dentofac Orthop 146:355–363

    Google Scholar 

  • Erickson GM, Catanese J, Keaveny TM (2002) Evolution of the biomechanical properties of the femur. Anat Rec 268:115–124

    PubMed  Google Scholar 

  • Fitton LC, Shi JF, Fagan MJ, O’Higgins P (2012) Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. J Anat 221:55–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fitton LC, PrôA M, Rowland C, Toro-Ibacache V, O’Higgins P (2015) The impact of simplifications on the performance of a finite element model of a Macaca fascicularis cranium. Anat Rec 298:107–121

    Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec 275:1081–1101

    Google Scholar 

  • Gignac PM, Erickson GM (2015) Ontogenetic changes in dental form and tooth pressures facilitate developmental niche shifts in American alligators. J Zool 295:132–142

    Google Scholar 

  • Gill PG, Purnell MA, Crumpton N, Robson Brown K, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512:303–307

    CAS  Google Scholar 

  • Gill FL, Hummel J, Sharifi AR, Lee AP, Lomax BH (2018) Diets of giants: the nutritional value of sauropod diet during the Mesozoic. Palaeontology 61:647–658

    PubMed  PubMed Central  Google Scholar 

  • Ginot S, Claude J, Hautier L (2018) One skull to rule them all? Descriptive and comparative anatomy of the masticatory apparatus in five mouse species. J Morphol 2018:1–22

    Google Scholar 

  • Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. An experimental study. J Bone Jt Surg 61:539–546

    CAS  Google Scholar 

  • Goswami A, Binder WJ, Meachen J, O’Keefe FR (2015) The fossil record of phenotypic integration and modularity: a deep-time perspective on developmental and evolutionary dynamics. PNAS 112:4891–4896

    CAS  PubMed  Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Ser B 205:581–598

    Google Scholar 

  • Gröning F, Liu J, Fagan MJ, O’Higgins P (2009) Validating a voxel-based finite element model of a human mandible using digital speckle pattern interferometry. J Biomech 42:1224–1229

    PubMed  Google Scholar 

  • Gröning F, Fagan MJ, O’Higgins P (2011) The effects of the periodontal ligament on mandibular stiffness: a study combining finite element analysis and geometric morphometrics. J Biomech 44:1304–1312

    PubMed  Google Scholar 

  • Gröning F, Bright JA, Fagan MJ, O’Higgins P (2012) Improving the validation of finite element models with quantitative full-field strain comparisons. J Biomech 45:1498–1506

    PubMed  Google Scholar 

  • Gross TS, Srinivasan S, Liu CC, Clemens TL, Bain SD (2002) Noninvasive loading of the murine tibia: an in vivo model for the study of mechanotransduction. J Bone Miner Res 17:493–501

    PubMed  PubMed Central  Google Scholar 

  • Grossnickle DM, Newham E (2016) Therian mammals experience an ecomorphological radiation during the late Cretaceous and selective extinction at the K–Pg boundary. Proc R Soc Ser B 283:20160256

    Google Scholar 

  • Hall BK, Herring SW (1990) Paralysis and growth of the musculoskeletal system in the embryonic chick. J Morphol 206:45–56

    CAS  PubMed  Google Scholar 

  • Holliday CM (2009) New insights into dinosaur jaw muscle anatomy. Anat Rec 292:1246–1265

    Google Scholar 

  • Holliday CM, Witmer LM (2007) Archosaur adductor chamber evolution: integration of musculoskeletal and topological criteria in jaw muscle homology. J Morphol 268:457–484

    PubMed  Google Scholar 

  • Irschick DJ, Albertson RC, Brennan P, Podos J, Johnson NA, Patek S, Dumont E (2013) Evo-devo beyond morphology: from genes to resource use. Trends Ecol Evol 28:267–273

    PubMed  Google Scholar 

  • Jones MEH, Gröning F, Dutel H, Sharp A, Fagan MJ, Evans SE (2017) The biomechanical role of the chondrocranium and sutures in a lizard cranium. J R Soc Interface 14:20170637

    PubMed  PubMed Central  Google Scholar 

  • Koolstra JH, van Eijden TMGJ (2005) Combined finite-element and rigid-body analysis of human jaw joint dynamics. J Biomech 38:2431–2439

    CAS  PubMed  Google Scholar 

  • Kupczik K, Dobson CA, Fagan MJ, Crompton RH, Oxnard CE, O’Higgins P (2007) Assessing mechanical function of the zygomatic region in macaques: validation and sensitivity testing of finite element models. J Anat 210:41–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauder GV (1995) On the inference of function from structure. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Lautenschlager S (2014) Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution. Proc R Soc Ser B 281:20140497

    PubMed  Google Scholar 

  • Lautenschlager S (2016) Digital reconstruction of soft-tissue structures in fossils, vol 22. In: The Paleontological Society Papers, pp 101–117

    Google Scholar 

  • Maclaren JA, Anderson PSL, Barrett PM, Rayfield EL (2017) Herbivorous dinosaur jaw disparity and its relationship to extrinsic evolutionary drivers. Paleobiology 43:15–33

    Google Scholar 

  • Marcé-Nogué J, Püschel TA, Kaiser TM (2017) A biomechanical approach to understand the ecomorphological relationship between primate mandibles and diet. Sci Rep 7:8364

    PubMed  PubMed Central  Google Scholar 

  • Maynard Smith J, Buriean R, Kauffman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution. Q Rev Biol 60:265–287

    Google Scholar 

  • Mayr E (1983) How to carry out the adaptationist program? Am Nat 121(3):324–334

    Google Scholar 

  • McCurry MR, Evans AR, Fitzgerald EMG, Adams JW, Clausen PD, McHenry CR (2017) The remarkable convergence of skull shape in crocodilians and toothed whales. Proc R Soc Ser B 284:20162348

    PubMed  Google Scholar 

  • McHenry CR, Clausen PD, Daniel WJT, Meers MB, Pendharkar A (2006) Biomechanics of the rostrum in crocodilians: a comparative analysis using finite element modeling. Anat Rec 288:827–849

    Google Scholar 

  • McHenry CR, Wroe S, Clausen PD, Moreno K, Cunningham E (2007) Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. PNAS 104:16010–16015

    CAS  PubMed  Google Scholar 

  • Meakin LB, Price JS, Lanyon LE (2014) The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone. Front Endocrinol 5(154):1–13

    Google Scholar 

  • Menegaz RA, Sublett SV, Figueroa SD, Hoffman TJ, Ravosa MJ, Aldridge K (2010) Evidence for the influence of diet on cranial form and robusticity. Anat Rec 293:630–641

    Google Scholar 

  • Neenan JM, Ruta M, Clack JA, Rayfield EJ (2014) Feeding biomechanics in Acanthostega and across the fish-tetrapod transition. Proc R Soc Ser B 281:20132689

    Google Scholar 

  • Nowlan NC, Prendergast PJ, Murphy P (2008) Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol 4(12):e1000250

    PubMed  PubMed Central  Google Scholar 

  • O’Higgins P, Cobb SN, Fitton LC, Gröning F, Phillips R, Liu J, Fagan MJ (2010) Combining geometric morphometrics and functional simulation: an emerging toolkit for virtual analyses. J Anat 218:3–15

    PubMed  PubMed Central  Google Scholar 

  • Padian K (1995) Form versus function: the evolution of a dialectic. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 264–277

    Google Scholar 

  • Panagiotopoulou O (2009) Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology. Ann Hum Biol 36:609–623

    CAS  PubMed  Google Scholar 

  • Panagiotopoulou O, Iriarte-Diaz J, Wilshin S, Dechow PC, Taylor AB, Abraha HM, Aljunid SF, Ross CF (2017) In vivo bone strain and finite element modeling of a rhesus macaque mandible during mastication. Zool 124:13–29

    Google Scholar 

  • Peterson T, Müller GB (2018) Developmental finite element analysis of cichlid pharyngeal jaws: quantifying the generation of a key innovation. PLoS One 13(1):e0189985

    PubMed  PubMed Central  Google Scholar 

  • Piras P, Silvestro D, Carotenuto F, Castiglione S, Kotsakis A, Maiorino L, Melchionna M, Mondanaro A, Sansalone G, Serio C, Vero VA, Raia (2018) Evolution of the sabertooth mandible: a deady ecomorphological specialization. Palaeogeogr, Palaeoclim, Palaeoecol 496:166–174

    Google Scholar 

  • Polly PD, Stayton CT, Dumont ER, Pierce SE, Rayfield EJ, Angielczyk KD (2016) Combining geometric morphometrics and finite element analysis with evolutionary modeling: towards a synthesis. J Vertebr Paleontol 36:e1111225

    Google Scholar 

  • Porro LB, Metzger KA, Iriarte-Diaz J, Ross CF (2013) In vivo bone strain and finite element modeling of the mandible of Alligator mississippiensis J Anat 223:195–227

    PubMed  PubMed Central  Google Scholar 

  • Rafferty KL, Herring SW (1999) Craniofacial sutures: morphology, growth, and in vivo masticatory strains. J Morphol 242:167–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravosa MJ, Menegaz RA, Scott JE, Daegling DJ, McAbee KR (2015) Limitations of a morphological criterion of adaptive inference in the fossil record. Biol Rev 91:883–898

    PubMed  Google Scholar 

  • Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annu Rev Earth Planet Sci 35:541–576

    CAS  Google Scholar 

  • Rayfield EJ (2011) Strain in the ostrich mandible during simulated pecking and validation of specimen-specific finite element models. J Anat 218:47–58

    PubMed  Google Scholar 

  • Rayfield EJ, Milner AC (2008) Establishing a framework for archosaur cranial mechanics. Paleobiol 34:494–515

    Google Scholar 

  • Rayfield EJ, Milner AC, Xuan VB, Young PG (2007) Functional morphology of spinosaur ‘crocodile-mimic’ dinosaurs. J Vertebr Paleontol 27:892–901

    Google Scholar 

  • Reed DA, Porro LB, Iriarte-Diaz J, Lemberg JB, Holliday CM, Anapol F, Ross CF (2011) The impact of bone and suture material properties on mandibular function in Alligator mississippiensis: testing theoretical phenotypes with finite element analysis. J Anat 218:59–74

    PubMed  Google Scholar 

  • Renaud S, Auffray J-C (2010) Adaptation and plasticity in insular evolution of the house mouse mandible. J Zool Syst Evol Res 48:138–150

    Google Scholar 

  • Roddy KA, Prendergast PJ, Murphy P (2011) Mechanical influences on morphogenesis of the knee joint revealed through morphological, molecular and computational analysis of immobilised embryos. PLoS One 6(2):e17526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolfe E, Roddy K, Murphy P (2013) Mechanical regulation of skeletal development. Curr Osteoporos Rep 11:107–116

    PubMed  Google Scholar 

  • Ross CF, Patel BA, Slice DE, Strait DS, Dechow PC, Richmond BG, Spencer MA (2005) Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis. Anat Rec 283A:288–299

    Google Scholar 

  • Sakamoto M (2010) Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proc R Soc Ser B 277:3327–3333

    PubMed  Google Scholar 

  • Skerry TM (2006) One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 6:122–127

    CAS  PubMed  Google Scholar 

  • Slater GJ, Van Valkenburgh B (2009) Allometry and performance: the evolution of skull form and function in felids. J Evol Biol 22:2278–2287

    CAS  PubMed  Google Scholar 

  • Smith KK (1993) In: Hanken J, Hall BK (eds) The skull. vol 3. University of Chicago Press, Chicago, pp 150–196

    Google Scholar 

  • Soons J, Genbrugge A, Podos J, Adriaens D, Aerts P, Dirckx J, Herrel A (2015) Is beak morphology in Darwin’s finches tuned to loading demands? PLoS One 10(6):e0129479

    PubMed  PubMed Central  Google Scholar 

  • Stansfield E, Parker J, O’Higgins P (2018) A sensitivity study of human mandibular biting simulations using finite element analysis. J Archaeol Sci Rep 22:420–432

    Google Scholar 

  • Strait DS, Wang Q, Dechow PC, Ross CF, Richmond BG, Spencer MA, Patel BA (2005) Modeling elastic properties in finite element analysis: how much precision is needed to produce an accurate model? Anat Rec 283A:275–287

    Google Scholar 

  • Stubbs TL, Pierce SE, Rayfield EJ, Anderson PSL (2013) Morphological and biomechanical disparity of crocodile-line archosaurs following the end-Triassic extinction. Proc R Soc Ser B 280:20131940

    PubMed  Google Scholar 

  • Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bone’s adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793

    PubMed  PubMed Central  Google Scholar 

  • Sun HB (2010) Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci 1211:37–50

    CAS  PubMed  Google Scholar 

  • Taylor AC, Lautenschlager S, Zhao Q, Rayfield EJ (2017) Biomechanical evaluation of different musculoskeletal arrangements in Psittacosaurus and implications for cranial function. Anat Rec 300:49–61

    Google Scholar 

  • Thomason JJ (1991) Cranial strength in relation to estimated biting forces in some mammals. Can J Zool 69:2326–2333

    Google Scholar 

  • Thomason JJ (1995) To what extent can the mechanical environment of a bone be inferred from its internal architecture? In Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 249–263

    Google Scholar 

  • Toro-Ibacache V, O’Higgins P (2016) The effect of varying jaw-elevator muscle forces on a finite element model of a human cranium. Anat Rec 299:828–839

    Google Scholar 

  • Toro-Ibacache V, Fitton LC, Fagan MJ, O’Higgins P (2016) Validity and sensitivity of a human cranial finite element model: implications for comparative studies of biting performance. J Anat 228:70–84

    PubMed  Google Scholar 

  • Tütken T (2011) The diet of sauropod dinosaurs: implications of carbon isotope analysis on teeth, bones, and plants. In Klein N, Remes K, Gee CT, Sander PM (eds) Biology of the sauropod dinosaurs: understanding the life of giants. Indiana University Press, pp 344

    Google Scholar 

  • Upchurch P, Barrett PM (2000) The evolution of sauropod feeding mechanisms. In: Sues H-D (ed) Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge University Press, Cambridge, UK, pp 79–122

    Google Scholar 

  • Wainwright PC (2007) Functional versus morphological diversity in macroevolution. Annu Rev Ecol Evol Syst 38:381–401

    Google Scholar 

  • Walmsley CW, Smits PD, Quayle MR, McCurry MR, Richards HS, Oldfield CC, Wroe S, Clausen PD, McHenry CR (2013) Why the long face? The mechanics of mandibular symphysis proportions in crocodiles. PLoS One 8(1):e53873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QA, Smith AL, Strait DS, Wright BW, Richmond BG, Grosse IR, Byron CD, Zapata U (2010) The global impact of sutures assessed in a finite element model of a macaque cranium. Anat Rec 293:1477–1491

    Google Scholar 

  • Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, pp 19–33

    Google Scholar 

  • Wolff J (1892) The law of bone transformation. Hirschwald, Berlin

    Google Scholar 

  • Woo SL-Y, Kuei SC, Amiel D, Gomez MA, Hayes WC, White FC, Akeson WH (1981) The effect of prolonged physical training on the properties of long bone: a study of Wolff’s law. J Bone Jt Surg 63-A:780–787

    CAS  Google Scholar 

  • Wood SA, Strait DS, Dumont ER, Ross CF, Grosse IR (2011) The effects of modeling simplifications on craniofacial finite element models: the alveoli (tooth sockets) and periodontal ligaments. J Biomech 44:1831–1838

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily J. Rayfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rayfield, E.J. (2019). What Does Musculoskeletal Mechanics Tell Us About Evolution of Form and Function in Vertebrates?. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_3

Download citation

Publish with us

Policies and ethics