Skip to main content

Feeding in Snakes: Form, Function, and Evolution of the Feeding System

  • Chapter
  • First Online:

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Snakes are a diverse group of squamate reptiles characterized by a unique feeding system and other traits associated with elongation and limblessness. Despite the description of transitional fossil forms, the evolution of the snake feeding system remains poorly understood, partly because only a few snakes have been studied thus far. The idea that the feeding system in most snakes is adapted for consuming relatively large prey is supported by studies on anatomy and functional morphology. Moreover, because snakes are considered to be gape-limited predators, studies of head size and shape have shed light on feeding adaptations. Studies using traditional metrics have shown differences in head size and shape between males and females in many species that are linked to differences in diet. Research that has coupled robust phylogenies with detailed morphology and morphometrics has further demonstrated the adaptive nature of head shape in snakes and revealed striking evolutionary convergences in some clades. Recent studies of snake strikes have begun to reveal surprising capacities that warrant further research. Venoms, venom glands, and venom delivery systems are proving to be more widespread and complex than previously recognized. Some venomous and many nonvenomous snakes constrict prey. Recent studies of constriction have shown previously unexpected responsiveness, strength, and the complex and diverse mechanisms that incapacitate or kill prey. Mechanisms of drinking have proven difficult to resolve, although a new mechanism was proposed recently. Finally, although considerable research has focused on the energetics of digestion, much less is known about the energetics of striking and handling prey. A wide range of research on these and other topics has shown that snakes are a rich group for studying form, function, behavior, ecology, and evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albright RG, Nelson EM (1959) Cranial kinesis of the generalised colubrid snake Elaphe obsoleta quadrivittata. II. Functional morphology. J Morphol 105:241–291

    CAS  PubMed  Google Scholar 

  • Alfaro ME (2002) Forward attack modes of aquatic feeding garter snakes. Funct Ecol 16:204–215

    Google Scholar 

  • Alfaro ME (2003) Sweeping and striking: a kinematic study of the trunk during prey capture in three thamnophiine snakes. J Exp Biol 206:2381–2392

    PubMed  Google Scholar 

  • Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW (2005) Postprandial cardiac hypertrophy in pythons. Nature 434:37–38

    CAS  PubMed  Google Scholar 

  • Anderson CV, Deban SM (2010) Ballistic tongue projection in chameleons maintains high performance at low temperature. Proc Natl Acad Sci USA 107:5495–5499

    CAS  PubMed  Google Scholar 

  • Anderson PSL, LaCosse J, Pankow M (2016) Point of impact: the effect of size and speed on puncture mechanics. Interface Focus 6:20150111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andjelkovic M, Blagojevic V, Tomovic L, Ivanovic A (2016a) Ontogeny of pileus shape in Natrix natrix and N. tesselata. Herpetol J 26:3–9

    Google Scholar 

  • Andjelkovic M, Tomovic L, Ivanovic A (2016b) Variation in skull size and shape of two snake species (Natrix natrix and Natrix tesselata). Zoomorphology 135:243–253

    Google Scholar 

  • Arnold SJ (1993) Foraging theory and prey-size–predator-size relations in snakes. In: Seigel RA, Collins JT (eds) Snakes: ecology and behavior. McGraw Hill, New York, pp 87–116

    Google Scholar 

  • Aubret F, Shine R (2009) Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr Biol 19:1932–1936

    CAS  PubMed  Google Scholar 

  • Aubret F, Shine R, Bonnet X (2004) Adaptive developmental plasticity in snakes. Nature 431:261–262

    CAS  PubMed  Google Scholar 

  • Bakken GS, Krochmal AR (2007) The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis. J Exp Biol 210:2801–2810

    PubMed  Google Scholar 

  • Barlow A, Pook CE, Harrison RA, Wüster W (2009) Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proc R Soc Lond B 276:2443–2449

    CAS  Google Scholar 

  • Bealor MT, Saviola AJ (2007) Behavioural complexity and prey-handling ability in snakes: gauging the benefits of constriction. Behaviour 144:907–929

    Google Scholar 

  • Beaupre SJ, Montgomery CE (2007) The meaning and consequences of foraging mode in snakes. In: Reilly SM, McBrayer LD, Miles DB (eds) Lizard ecology: the evolutionary consequences of foraging mode. Cambridge University Press, Cambridge, pp 334–367

    Google Scholar 

  • Bels V, Kardong KV (1995) Water drinking in snakes: evidence for an esophageal sphincter. J Exp Zool 272:235–239

    Google Scholar 

  • Berkhoudt H, Kardong KV, Zweers G (1995) Mechanics of drinking in the brown tree snake, Boiga irregularis. Zoology 98:98–103

    Google Scholar 

  • Bilcke J, Herrel A, Aerts P (2006) Effect of prey- and predator size on the capture success of an aquatic snake. Belg J Zool 137:191–195

    Google Scholar 

  • Boback SM, Hall AE, McCann KJ, Hayes AW, Forrester JS, Zwemer CF (2012) Snake modulates constriction in response to prey’s heartbeat. Biol Lett 8:473–476

    PubMed  PubMed Central  Google Scholar 

  • Boback SM, McCann KJ, Wood KA, McNeal PM, Blankenship EL, Zwemer CF (2015) Snake constriction rapidly induces circulatory arrest in rats. J Exp Biol 218:2279–2288

    PubMed  Google Scholar 

  • Boltt RE, Ewer RF (1964) The functional anatomy of the head of the puff adder, Bitis arietans (Merr.). J Morphol 114:83–106

    Google Scholar 

  • Bonnet X, Shine R, Naulleau G, Thiburce C (2001) Plastic vipers: influence of food intake on the size and shape of Gaboon vipers (Bitis gabonica). J Zool 255:341–351

    Google Scholar 

  • Borczyk B (2015) Allometry of head size and shape dimorphism in the grass snake (Natrix natrix L.). Turk J Zool 39:340–343

    CAS  Google Scholar 

  • Brecko J, Vervust B, Herrel A, Van Damme R (2011) Head morphology and diet in the dice snake (Natrix tessellata). Mertensiella 18:20–29

    Google Scholar 

  • Britt EJ, Clark AJ, Bennett AF (2009) Dental morphologies in gartersnakes (Thamnophis) and their connection to dietary preferences. J Herpetol 43:252–259

    Google Scholar 

  • Cadena V, Andrade DV, Bovo RP, Tattersall G (2013) Evaporative respiratory cooling augments pit organ thermal detection in rattlesnakes. J Comp Physiol A 199:1093–1104

    CAS  Google Scholar 

  • Canjani C, Andrade DV, Cruz-Neto AP, Abe AS (2003) Aerobic metabolism during predation by a boid snake. Comp Biochem Physiol A 133:487–498

    Google Scholar 

  • Catania KC (2009) Tentacled snakes turn C-starts to their advantage and predict future prey behavior. Proc Natl Acad Sci USA 106:11183–11187

    CAS  PubMed  Google Scholar 

  • Catania KC (2010) Born knowing: tentacle snakes innately predict future prey behavior. PLoS ONE 5:e10953–e10953

    PubMed  PubMed Central  Google Scholar 

  • Catania KC, Leitch DB, Gauthier D (2010) Function of the appendages in tentacled snakes (Erpeton tentaculatus). J Exp Biol 213:359–367

    CAS  PubMed  Google Scholar 

  • Chippaux J-P, Huchzermeyer FW (2006) Snake venoms and envenomations. Krieger Publ Co, Malabar

    Google Scholar 

  • Chu CW, Tsai TS, Tsai IH, Lin YS, Tu MC (2009) Prey envenomation does not improve digestive performance in Taiwanese pit vipers (Trimeresurus gracilis and T. stejnegeri stejnegeri). Comp Biochem Physiol A 152:579–585

    Google Scholar 

  • Clark RW, Tangco S, Barbour MA (2012) Field video recordings reveal factors influencing predatory strike success of free-ranging rattlesnakes (Crotalus spp.). Anim Behav 84:183–190

    Google Scholar 

  • Close M, Cundall D (2012) Mammals as prey: estimating ingestible size. J Morphol 273:1042–1049

    PubMed  Google Scholar 

  • Close M, Cundall D (2014) Snake lower jaw skin: extension and recovery of a hyperextensible keratinized integument. J Exp Zool 321A:78–97

    Google Scholar 

  • Close M, Perni S, Franzini-Armstrong C, Cundall D (2014) Highly extensible skeletal muscle in snakes. J Exp Biol 217:2445–2448

    PubMed  Google Scholar 

  • Conrad JL (2008) Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus Nat Hist 310:1–182

    Google Scholar 

  • Crowe-Riddell JM, Snelling EP, Watson AP, Suh AK, Partridge JC, Sanders KL (2016) The evolution of scale sensilla in the transition from land to sea in elapid snakes. Open Biol 6:160054

    PubMed  PubMed Central  Google Scholar 

  • Cruz-Neto AP, Andrade DV, Abe AS (1999) Energetic cost of predation: aerobic metabolism during prey ingestion by juvenile rattlesnakes, Crotalus durissus. J Herpetol 33:229–234

    Google Scholar 

  • Cruz-Neto AP, Andrade DV, Abe AS, (2001) Energetic and physiological correlates of prey handling and ingestion in lizards and snakes. Comp Biochem Physiol A 128:515–533

    Google Scholar 

  • Cundall D (1983) Activity of head muscles during feeding by snakes: a comparative study. Am Zool 23:383–396

    Google Scholar 

  • Cundall D (1987) Functional morphology. In: Seigel RA, Collins JT, Novak SS (eds) Snakes: ecology and evolutionary biology. Macmillan, New York, pp 106–140

    Google Scholar 

  • Cundall D (1995) Feeding behaviour in Cylindrophis and its bearing on the evolution of alethinophidian snakes. J Zool 237:353–376

    Google Scholar 

  • Cundall D (2000) Drinking in snakes: kinematic cycling and water transport. J Exp Biol 203:2171–2185

    CAS  PubMed  Google Scholar 

  • Cundall D (2009) Viper fangs: functional limitations of extreme teeth? Physiol Biochem Zool 82:63–79

    PubMed  Google Scholar 

  • Cundall D, Beaupre SJ (2001) Field records of predatory strike kinematics in timber rattlesnakes, Crotalus horridus. Amphibia-Reptilia 22:492–498

    Google Scholar 

  • Cundall D, Deufel A (1999) Striking patterns in booid snakes. Copeia 1999:868–883

    Google Scholar 

  • Cundall D, Deufel A (2006) Influences of the venom delivery system on intraoral prey transport in snakes. Zool Anz 245:193–210

    Google Scholar 

  • Cundall D, Gans C (1979) Feeding in water snakes: an electromyographic study. J Exp Zool 209:189–208

    Google Scholar 

  • Cundall D, Greene HW (2000) Feeding in snakes. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, London, pp 293–333

    Google Scholar 

  • Cundall D, Irish F (2008) The snake skull. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, vol 20. Morphology H. The Skull of lepidosauria. Society for the Study of Amphibans and Reptiles, pp 349–692

    Google Scholar 

  • Cundall D, Deufel A, Irish F (2007) Feeding in boas and pythons: motor recruitment patterns during striking. In: Henderson RW, Powell R (eds) Biology of the boas and pythons. Eagle Mountain Publishing, Utah, pp 169–197

    Google Scholar 

  • Cundall D, Brainerd EL, Constantino J, Deufel A, Grapski D, Kley NJ (2012) Drinking in snakes: resolving a biomechanical puzzle. J Exp Zool 317:152–172

    Google Scholar 

  • Cundall D, Tuttman C, Close M (2014) A model of the anterior esophagus in snakes, with functional and developmental implications. Anat Rec 297:586–598

    Google Scholar 

  • Da Silva FO, Fabre A-C, Savriama Y, Ollonen J, Mahlow K, Herrel A, Müller J, Di-Poï N (2018) The ecological origins of snakes as revealed by skull evolution. Nat Commun 9:376. https://doi.org/10.1038/s41467-017-02788-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daghfous G, Smargiassi M, Libourel P-A, Wattiez R, Bels V (2012) The function of oscillatory tongue-flicks in snakes: insights from kinematics of tongue flicking in the banded water snake (Nerodia fasciata). Chem Senses 37:883–896

    PubMed  Google Scholar 

  • Daltry JC, Wüster W, Thorpe RS (1996) Diet and snake venom evolution. Nature 379:537–540

    CAS  PubMed  Google Scholar 

  • Deban SM, Lappin AK (2011) Thermal effects on the dynamics and motor control of ballistic prey capture in toads: maintaining high performance at low temperature. J Exp Biol 214:1333–1346

    Google Scholar 

  • Deban SM, Richardson JC (2011) Cold-blooded snipers: thermal independence of ballistic tongue projection in the salamander Hydromantes platycephalus. J Exp Zool 315A:618–630

    Google Scholar 

  • Deban SM, Scales JA (2016) Dynamics and thermal sensitivity of ballistic and non-ballistic feeding in salamanders. J Exp Biol 291:431–444

    Google Scholar 

  • de Groot JH, van der Sluijs I, Snelderwaard PC, van Leeuwen J (2004) A three-dimensional analysis of tongue flicking in Python molurus. J Exp Biol 207:827–839

    PubMed  Google Scholar 

  • de Oliveira L, Prudente ALC, Zaher H (2014) Unusual labial glands in snakes of the genus Geophis Wagler, 1830 (Serpentes: Dipsadinae). J Morphol 275:87–99

    PubMed  Google Scholar 

  • de Oliveira L, Scartozzoni RR, de Almeida-Santos SM, Jared C, Antoniazzi MM, da Graça Salomão M (2016) Morphology of Duvernoy’s glands and maxillary teeth and a possible function of the Duvernoy’s gland secretion in Helicops modestus Günther, 1861 (Serpentes: Xenodontinae). S Amer J Herpetol 11:54–65

    Google Scholar 

  • de Oliveira L, Guerra-Fuentesa RA, Zaher H (2017) Embryological evidence of a new type of seromucous labial gland in neotropical snail-eating snakes of the genus Sibynomorphus. Zool Anz 266:89–94

    Google Scholar 

  • de Queiroz A (1984) Effects of prey type on the prey-handling behavior of the bullsnake, Pituophis melanoleucus. J Herpetol 18:333–336

    Google Scholar 

  • Dell’Aglio DD, Toma TSP, Muelbert AE, Sacco AG, Tozetti AM (2012) Head triangulation as anti-predatory mechanism in snakes. Biota Neotrop 12:1912032012

    Google Scholar 

  • Deufel A, Cundall D (1999) Do booids stab prey? Copeia 1999:1102–1107

    Google Scholar 

  • Deufel A, Cundall D (2003) Feeding in Atractaspis (Serpentes: Atractaspididae): a study in conflicting functional constraints. Zoology 106:43–61

    PubMed  Google Scholar 

  • dos Santos MM, da Silva FM, Hingst-Zaher E, Machado FA, Zaher HE, Prudente ALC (2017) Cranial adaptations for feeding on snails in species of Sibynomorphus (Dipsadidae: Dipsadinae). Zoology 120:24–30

    PubMed  Google Scholar 

  • Dullemeijer P (1956) A comparative functional-anatomical study of the heads of some Viperidae. Morph Jb 99:881–985

    Google Scholar 

  • Dwyer CM, Kaiser H (1997) Relationships between skull form and prey selection in the thamnophiine snake genera Nerodia and Regina. J Herpetol 31:463–475

    Google Scholar 

  • Ebert J, Westhoff G (2006) Behavioural examination of the infrared sensitivity of rattlesnakes (Crotalus atrox). Comp Physiol A 192:941–947

    CAS  Google Scholar 

  • Ebert J, Müller S, Westhoff G (2007) Behavioural examination of the infrared sensitivity of ball pythons. J Zool 272:340–347

    Google Scholar 

  • Enok S, Leite GSPC, Leite CAC, Gesser H, Hedrick MS, Wang T (2016) Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius. J Exp Biol 219:3009–3018

    PubMed  Google Scholar 

  • Esquerré D, Keogh JS (2016) Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas. Ecol Lett 19:800–809

    PubMed  Google Scholar 

  • Ernst CH, Ernst EM (2003) Snakes of the United States and Canada. Smithsonian Institution, Washington, DC

    Google Scholar 

  • Fabre A-C, Bickford D, Segall M, Herrel A (2016) The impact of diet, habitat use and behaviour on head shape evolution in homalopsid snakes. Biol J Linn Soc 118:634–647

    Google Scholar 

  • Feder ME, Arnold SJ (1982) Anaerobic metabolism and behavior during predatory encounters between snakes (Thamnophis elegans) and salamanders (Plethodon jordani). Oecologia 53:93–97

    PubMed  Google Scholar 

  • Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP (2016) A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PLoS ONE 11:e0161070

    PubMed  PubMed Central  Google Scholar 

  • Filoramo NI, Schwenk K (2009) The mechanism of chemical delivery to the vomeronasal organs in squamate reptiles: a comparative morphological approach. J Exp Zool 311A:20–34

    Google Scholar 

  • Forsman A (1996) An experimental test for food effects on head size allometry in juvenile snakes. Evolution 50:2536–2542

    PubMed  Google Scholar 

  • Forsman A, Lindell LE (1993) The advantage of a big head: swallowing performance in adders, Vipera berus. Funct Ecol 7:183–189

    Google Scholar 

  • Forsman A, Shine R (1997) Rejection of non-adaptive hypotheses for intraspecific variation in trophic morphology in gape-limited predators. Biol J Linn Soc 62:209–223

    Google Scholar 

  • Frazzetta TH (1966) Studies on the morphology and function of the skull in the Boidae (Serpentes). Part II. Morphology and function of the jaw apparatus in Python sebae and Python molurus. J Morph 118:217–295

    CAS  PubMed  Google Scholar 

  • Frazzetta TH (1999) Adaptations and significance of the cranial feeding apparatus of the sunbeam snake (Xenopeltis unicolor): Part I. Anatomy of the skull. J Morphol 239:27–43

    CAS  PubMed  Google Scholar 

  • Friedel P, Young BA, van Hemmen JL (2008) Auditory localization of ground-borne vibrations in snakes. Phys Rev Lett 100:048701-1–048701-4

    Google Scholar 

  • Fry B (ed) (2015) Venomous reptiles and their toxins: evolution, pathophysiology and biodiscovery. Oxford University Press, Oxford

    Google Scholar 

  • Fry BG, Undheim EAB, Ali SA, Jackson TNW, Debono J, Scheib H, Ruder T, Morgenstern D, Cadwallader L, Whitehead D, Nabuurs R, van der Weerd L, Vidal N, Roelants K, Hendrikx I, Gonzalez SP, Koludarov I, Jones A, King GF, Antunes A, Sunagar K (2013) Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in Toxicoferan reptiles. Moll Cell Proteom 12:1881–1899

    CAS  Google Scholar 

  • Gans C (1952) The functional morphology of the egg-eating adaptations in the snake genus Dasypeltis. Zoologica 37:209–244

    Google Scholar 

  • Gans C (1961) The feeding mechanism of snakes and its possible evolution. Am Zool 1:217–227

    Google Scholar 

  • Gans C (1974) Biomechanics: an approach to vertebrate biology. The University of Michigan Press, Ann Arbor

    Google Scholar 

  • Gans C, Oshima M (1952) Adaptations for egg eating in the snake Elaphe climacophora (Boie). Amer Mus Novitates 1571:1–16

    Google Scholar 

  • Gartner GEA, Greene HW (2008) Adaptation in the African egg-eating snake: a comparative approach to a classic study in evolutionary functional morphology. J Zool 275:368–374

    Google Scholar 

  • Gauthier JA, Kearney M, Maisano JA, Rieppel O, Belhke ADB (2012) Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 53:3–308

    Google Scholar 

  • Gibbons W, Dorcas M (2015) Snakes of the Southeast, 2nd edn. University of Georgia Press, Athens

    Google Scholar 

  • Gracheva EO, Ingolia NT, Kelly YM, Cordero-Morales JF, Hollopeter G, Chesler AT, Sánchez EE, Perez JC, Weissman JS, Julius D (2010) Molecular basis of infrared detection by snakes. Nature 464:1006–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greene HW (1983) Dietary correlates of the origin and radiation of snakes. Am Zool 201:315–329

    Google Scholar 

  • Greene HW (1984) Feeding behavior and diet of the eastern coral snake, Micrurus fulvius. In: Seigel RA, Hunt LE, Knight JL, Malaret L, Zuschlag NL (eds) Vertebrate ecology and systematics—a tribute to Henry S. Fitch. Museum of natural history. The University of Kansas, Lawrence, pp 147–161

    Google Scholar 

  • Greene HW (1994) Homology and behavioral repertoires. In: Hall BK (ed) Homology: the hierarchical basis of comparative biology. Academic Press, San Diego, pp 369–391

    Google Scholar 

  • Greene HW (1997) Snakes: the evolution of mystery in nature. University of California Press, Berkeley

    Google Scholar 

  • Greene HW, Burghardt GM (1978) Behavior and phylogeny: constriction in ancient and modern snakes. Science 200:74–77

    CAS  PubMed  Google Scholar 

  • Greenwald OE (1974) Thermal dependence of striking and prey capture by gopher snakes. Copeia 1974:141–148

    Google Scholar 

  • Greenwald OE (1978) Kinematics and time relations of prey capture by gopher snakes. Copeia 1978:263–268

    Google Scholar 

  • Grudzien TA, Huebner BJ, Cvetkovic A, Joswiak GR (1992) Multivariate analysis of head shape in Thamnophis s. sirtalis (Serpentes: Colubridae) among island and mainland populations from northeastern Lake Michigan. Am Midl Nat 127:339–347

    Google Scholar 

  • Haas G (1973) Muscles of the jaws and associated structures in the Rhynchocephalia and Squamata. In: Gans C, Parsons TS (eds) Biology of the reptilia, vol 4. Morphology D. Academic Press, London, pp 285–490

    Google Scholar 

  • Hampton PM (2011) Comparison of cranial form and function in association with diet in natricine snakes. J Morphol 272:1435–1443

    PubMed  Google Scholar 

  • Hampton PM (2014) Allometry of skull morphology, gape size and ingestion performance in the banded watersnake (Nerodia fasciata) feeding on two types of prey. J Exp Biol 217:472–478

    PubMed  Google Scholar 

  • Hampton P, Kalmus T (2014) The allometry of cranial morphology and gape size in red-bellied mudsnakes (Farancia abacura). Herpetologica 70:290–297

    Google Scholar 

  • Hampton PM, Moon B (2013) Gape size, its morphological basis, and the validity of gape indices in western diamond-backed rattlesnakes (Crotalus atrox). J Morphol 274:194–202

    PubMed  Google Scholar 

  • Hansen K, Pedersen PBM, Pedersen M, Wang T (2013) Magnetic resonance imaging volumetry for noninvasive measures of phenotypic flexibility during digestion in Burmese pythons. Physiol Biochem Zool 86:149–158

    PubMed  Google Scholar 

  • Hardy DL (1994) A re-evaluation of suffocation as the cause of death during constriction by snakes. Herpetol Rev 25:45–47

    Google Scholar 

  • Hart NS, Coimbra JP, Collin SP, Westhoff G (2012) Photoreceptor types, visual pigments, and topographic specializations in the retinas of Hydrophiid sea snakes. J Comp Neurol 520:1246–1261

    CAS  PubMed  Google Scholar 

  • Hayes WK, Herbert SS, Rehling GC, Gennaro JF (2002) Factors that influence venom expenditure in viperids and other snake species during predatory and defensive contexts. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain Publishing, Utah, pp 267–278

    Google Scholar 

  • Henao-Duque AM, Ceballos CP (2013) Sex-related head size and shape dimorphism in Mapaná snakes (Bothrops asper) kept in captivity. Revista Colombiana de Ciencias Pecuarias 26:201–210

    Google Scholar 

  • Henderson RW, Pauers MJ, Colston TJ (2013) On the congruence of morphology, trophic ecology, and phylogeny in Neotropical treeboas (Squamata: Boidae: Corallus). Biol J Linn Soc 109:466–475

    Google Scholar 

  • Herrel A, Vincent SE, Alfaro ME, Van Wassenbergh S, Vanhooydonck B, Irschick DJ (2008) Morphological convergence as a consequence of extreme functional demands: examples from the feeding system of natricine snakes. J Evol Biol 21:1438–1448

    CAS  PubMed  Google Scholar 

  • Herrel A, Huyghe K, Okovic P, Lisicic D, Tadic Z (2011) Fast and furious: effects of body size on strike performance in an arboreal viper Trimeresurus (Cryptelytrops) albolabris. J Exp Zool 315:22–29

    Google Scholar 

  • Hibbitts TJ, Fitzgerald LA (2005) Morphological and ecological convergence in two natricine snakes. Biol J Linn Soc 85:363–371

    Google Scholar 

  • Higham TE (2007) The integration of locomotion and prey capture in vertebrates: morphology, behavior, and performance. Integr Comp Biol 47:82–95

    Google Scholar 

  • Higham TE, Clark RW, Collins CE, Whitford MD, Freymiller GA (2017) Rattlesnakes are extremely fast and variable when striking at kangaroo rats in nature: three-dimensional high-speed kinematics at night. Sci Rep 7:40412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hisaw FL, Gloyd HK (1926) The bull snake as a natural enemy of injurious rodents. J Mammal 7:200–205

    Google Scholar 

  • Hoso M, Asami T, Hori M (2007) Right-handed snakes: convergent evolution of asymmetry for functional specialization. Biol Lett 3:169–172

    PubMed  PubMed Central  Google Scholar 

  • Hsiang AY, Field DJ, Webster TH, Behlke ADB, Davis MB, Racicot RA, Gauthier JA (2015) The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol Biol 15:87

    PubMed  PubMed Central  Google Scholar 

  • Hutchinson DA, Mori A, Savitzky AH, Burghardt GM, Wu X, Meinwald J, Schroeder FC (2007) Dietary sequestration of defensive steroids in nuchal glands of the Asian snake Rhabdophis tigrinus. Proc Natl Acad Sci USA 104:2265–2270

    CAS  PubMed  Google Scholar 

  • Hutchinson DA, Savitzky AH, Burghardt GM, Nguyen C, Meinwald J, Schroeder FC, Mori A (2013) Chemical defense of an Asian snake reflects local availability of toxic prey and hatchling diet. J Zool 289:270–278

    CAS  Google Scholar 

  • Jackson K (2003) The evolution of venom-delivery systems in snakes. Zool J Linn Soc 137:337–354

    Google Scholar 

  • Jackson K, Fritts TH (2004) Dentitional specialization for durophagy in the Common Wolf snake, Lycodon aulicus capucinus. Amphibia-Reptilia 25:247–254

    Google Scholar 

  • Jackson K, Kley NJ, Brainerd EL (2004) How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes: Colubridae). Zoology 107:191–200

    PubMed  Google Scholar 

  • Janoo A, Gasc J-P (1992) High speed motion analysis of the predatory strike and fluographic study of oesophageal deglutition in Vipera ammodytes: more than meets the eye. Amphibia-Reptilia 13:315–325

    Google Scholar 

  • Jayne BC, Riley MA (2007) Scaling of the axial morphology and gap-bridging ability of the brown tree snake, Boiga irregularis. J Exp Biol 210:1148–1160

    PubMed  Google Scholar 

  • Jayne BC, Voris HK, Ng PKL (2002) Snake circumvents constraints on prey size. Nature 418:143

    CAS  PubMed  Google Scholar 

  • Jensen B, Larsen CK, Nielsen JM, Simonsen LS, Wang T (2011) Change of cardiac function, but not form, in postprandial pythons. Comp Biochem Physiol A 160:35–42

    CAS  Google Scholar 

  • Johnston P (2014) Homology of the jaw muscles in lizards and snakes: a solution from a comparative gnathostome approach. Anat Rec 297:574–585

    Google Scholar 

  • Kardong KV (1982) Comparative study of changes in prey capture behavior of the cottonmouth (Agkistrodon piscivorus) and Egyptian cobra (Naja haje). Copeia 1982:337–343

    Google Scholar 

  • Kardong KV, Bels VL (1998) Rattlesnake strike behavior: kinematics. J Exp Biol 201:837–850

    PubMed  Google Scholar 

  • Kardong KV, Haverly JE (1993) Drinking by the common boa, Boa constrictor. Copeia 1993:808–818

    Google Scholar 

  • King RB (2002) Predicted and observed maximum prey size–snake size allometry. Funct Ecol 16:766–772

    Google Scholar 

  • Klaczko J, Sherratt E, Setz EZF (2016) Are diet preferences associated to skulls shape diversification in xenodontine snakes? PLoS ONE 11:e148375

    Google Scholar 

  • Klauber LM (1972) Rattlesnakes: their habits, life histories, and influence on mankind. University of California Press, Berkeley

    Google Scholar 

  • Kley NJ (2001) Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. Amer Zool 41:1321–1337

    Google Scholar 

  • Kley NJ (2006) Morphology of the lower jaw and suspensorium in the Texas Blindsnake, Leptotyphlops dulcis (Scolecophidia: Leptotyphlopidae). J Morphol 267:494–515

    PubMed  Google Scholar 

  • Kley NJ, Brainerd EL (1999) Feeding by mandibular raking in a snake. Nature 402:369–370

    CAS  Google Scholar 

  • Kley NJ, Brainerd EL (2002) Post-cranial prey transport mechanisms in the black pinesnake Pituophis melanoleucus lodingi: an X-ray videographic study. Zoology 105:153–164

    PubMed  Google Scholar 

  • Kochva E (1978) Oral glands of the reptilia. In: Gans C, Gans KA (eds) Biology of the reptilia, vol 8. Physiology B. Academic Press, London, pp 43–162

    Google Scholar 

  • Krause MA, Burghardt GM (2007) Sexual dimorphism of body and relative head size in neonatal common garter snakes. J Zool 272:156–164

    Google Scholar 

  • Krochmal AR, Bakken GS (2003) Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J Exp Biol 206:2539–2545

    PubMed  Google Scholar 

  • Krochmal AR, Bakken GS, LaDuc TJ (2004) Heat in evolution’s kitchen: evolutionary perspectives on the functions and origin of the facial pit of pitvipers (Viperidae: Crotalinae). J Exp Biol 207:4231–4238

    PubMed  Google Scholar 

  • LaBonte JP, Welch KC Jr, Suarez RK (2011) Digestive performance in neonatal Southern Pacific Rattlesnakes (Crotalus oreganus helleri). Can J Zool 89:705–713

    Google Scholar 

  • LaDuc TJ (2002) Does a quick offense equal a quick defense? Kinematic comparisons of predatory and defensive strikes in the western diamond-backed rattlesnake (Crotalus atrox). In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain Publishing, Utah, pp 267–278

    Google Scholar 

  • Lee MSY, Bell GL Jr, Caldwell MW (1999) The origin of snake feeding. Nature 400:655–659

    CAS  Google Scholar 

  • Lillywhite HB (2014) How snakes work: structure, function, and behavior of the world’s snakes. Oxford University Press, New York

    Google Scholar 

  • Lillywhite HB, de Delva P, Noonan BP (2002) Patterns of gut passage time and the chronic retention of fecal mass in viperid snakes. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain Publishing, Utah, pp 497–506

    Google Scholar 

  • Liu Y, Chen Q, Papenfuss TJ, Lu F, Tang YZ (2016) Eye and pit size are inversely correlated in Crotalinae: implications for selection pressure relaxation. J Morphol 277:107–117

    PubMed  Google Scholar 

  • Longrich NR, Bhullar B-AS, Gauthier JA (2012) A transitional snake from the Late Cretaceous period of North America. Nature 488:205–208

    CAS  PubMed  Google Scholar 

  • Lopez MS, Manzano AS, Prieto YA (2013) Ontogenetic variation in head morphology and diet in two snakes (Viperidae) from northeastern Argentina. J Herpetol 47:406–412

    Google Scholar 

  • Lourdais O, Brischoux F, DeNardo D, Shine R (2004) Protein catabolism in pregnant snakes (Epicrates cenchria maurus, Boidae) compromises musculature and performance after reproduction. J Comp Physiol B 174:383–391

    CAS  PubMed  Google Scholar 

  • Lourdais O, Brischoux F, Shine R, Bonnet X (2005) Adaptive maternal cannibalism in snakes (Epicrates cenchria maurus, Boidae). Biol J Linn Soc 84:767–774

    Google Scholar 

  • Mackessy SP (ed) (2009) Handbook of venoms and toxins of reptiles. CRC Press, Boca Raton

    Google Scholar 

  • Mackessy SP (2010) Evolutionary trends in venom composition in the western rattlesnakes (Crotalus viridis sensu lato): toxicity vs. tenderizers. Toxicon 55:1463–1474

    CAS  PubMed  Google Scholar 

  • Mackessy SP, Saviola AJ (2016) Understanding biological roles of venoms among the Caenophidia: the importance of rear-fanged snakes. Integr Comp Biol 56:1004–1021

    CAS  PubMed  Google Scholar 

  • Mangiacotti M, Limongi L, Sannolo M, Sacchi R, Zuffi MAL, Scali S (2014) Head shape variation in eastern and western Montpellier snakes. Acta Herpetol 92:167–177

    Google Scholar 

  • Margres MJ, Wray KP, Seavy M, McGivern JJ, Sanader D, Rokyta DR (2015) Phenotypic integration in the feeding system of the eastern diamondback rattlesnake (Crotalus adamanteus). Mol Ecol 24:3405–3420

    PubMed  Google Scholar 

  • Martill DM, Tischlinger H, Longrich NR (2015) A four-legged snake from the Early Cretaceous of Gondwana. Science 349:416–419

    CAS  PubMed  Google Scholar 

  • McCue MD (2006a) Cost of producing venom in three North American pitviper species. Copeia 2006:818–825

    Google Scholar 

  • McCue MD (2006b) Specific dynamic action: a century of investigation. Comp Biochem Physiol A 144:381–394

    CAS  Google Scholar 

  • McCue MD (2007) Prey envenomation does not improve digestive performance in western diamondback rattlesnakes (Crotalus atrox). J Exp Zool 307A:568–577

    Google Scholar 

  • McDowell SB (1986) The architecture of the corner of the mouth in colubroid snakes. J Herpetol 20:353–407

    Google Scholar 

  • McDowell SB (2008) The skull of serpentes. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, vol 21. Morphology I. The Skull and appendicular locomotor apparatus of lepidosauria. Society for the Study of Amphibians and Reptiles, pp 467–620

    Google Scholar 

  • McLaughlin RL (1989) Search modes of birds and lizards: evidence for alternative movement patterns. Am Nat 133:654–670

    Google Scholar 

  • McLees F (1928) Killing by constriction. Bull Antivenin Inst Amer 1:105

    Google Scholar 

  • Mehta RS (2003) Prey-handling behavior of hatchling Elaphe helena (colubridae). Herpetologica 59:469–474

    Google Scholar 

  • Mehta RS (2009) Early experience shapes the development of behavioral repertoires of hatchling snakes. J Ethol 27:143–151

    Google Scholar 

  • Mehta RS, Burghardt GM (2008) Contextual flexibility: reassessing the effects of prey size and status on prey restraint behaviour of macrostomate snakes. Ethol 114:133–145

    Google Scholar 

  • Meik JM, Setser K, Mociño-Deloya E, Lawing AM (2012) Sexual differences in head form and diet in a population of Mexican lance-headed rattlesnakes, Crotalus polystictus. Biol J Linn Soc 106:633–640

    Google Scholar 

  • Miller DE, Mushinsky HR (1990) Foraging ecology and prey size in the mangrove water snake, Nerodia fasciata compressicauda. Copeia 1990:1099–1106

    Google Scholar 

  • Mizuno T, Kojima Y (2015) A blindsnake that decapitates its termite prey. J Zool 297:220–224

    Google Scholar 

  • Moon BR (2000a) The mechanics and muscular control of constriction in gopher snakes (Pituophis melanoleucus) and a king snake (Lampropeltis getula). J Zool 252:83–98

    Google Scholar 

  • Moon BR (2000b) The mechanics of swallowing and the muscular control of diverse behaviors in gopher snakes. J Exp Biol 203:2589–2601

    CAS  PubMed  Google Scholar 

  • Moon BR, Mehta RS (2007) Constriction strength in snakes. In: Henderson RW, Powell R (eds) Biology of the boas and pythons. Eagle Mountain Publishing, Utah, pp 241–246

    Google Scholar 

  • Mori A (1998) Prey-handling behavior of three species of homalopsine snakes: features associated with piscivory and Duvernoy’s Glands. J Herpetol 32:40–50

    Google Scholar 

  • Mori A, Vincent SE (2008) An integrative approach to specialization: relationships among feeding morphology, mechanics, behaviour, performance and diet in two syntopic snakes. J Zool 275:47–56

    Google Scholar 

  • Murta-Fonseca RA, Fernandes DS (2016) The skull of Hydrodynastes gigas (Duméril, Bibron & Duméril, 1854) (Serpentes: Dipsadidae) as a model of snake ontogenetic allometry inferred by geometric morphometrics. Zoomorphol 135:233–241

    Google Scholar 

  • Natusch DJD, Lyons JA (2012) Relationships between ontogenetic changes in prey selection, head shape, sexual maturity, and colour in an Australasian python (Morelia viridis). Biol J Linn Soc 107:269–276

    Google Scholar 

  • Natusch DJD, Lyons JA (2014) Geographic and sexual variation in body size, morphology, and diet among five populations of Green Pythons (Morelia viridis). J Herpetol 48:317–323

    Google Scholar 

  • Nicholson J, Mirtschin P, Madaras F, Venning M, Kokkinn M (2006) Digestive properties of the venom of the Australian coastal taipan, Oxyuranus scutellatus (Peters, 1867). Toxicon 48:422–428

    CAS  PubMed  Google Scholar 

  • Olori JC, Bell CJ (2012) Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with special reference to disarticulated elements and variation. PLoS ONE 7:e23450

    Google Scholar 

  • Palci A, Lee MSY, Hutchinson MN (2016) Patterns of postnatal ontogeny of the skull and lower jaw of snakes as revealed by micro-CT scan data and three-dimensional geometric morphometrics. J Anat 229:723–754

    PubMed  PubMed Central  Google Scholar 

  • Parker HW, Grandison AGC (1977) Snakes: a natural history. Cornell University Press, New York

    Google Scholar 

  • Parker RM, Young BA, Kardong KV (2008) The forked tongue and edge detection in snakes (Crotalus oreganus): an experimental test. J Comp Psychol 122:35–40

    PubMed  Google Scholar 

  • Penning DA (2017a) The scaling of bite force and constriction performance in kingsnakes (Lampropeltis getula): proximate determinants and correlated performance. Integr Zool 12:121–131

    Google Scholar 

  • Penning DA (2017b) The gluttonous king: the effects of prey size and repeated feeding on predatory performance in kingsnakes. J Zool 302:119–125

    Google Scholar 

  • Penning DA, Cairns S (2016) Prey-handling behaviors of naïve Pantherophis guttatus. J Herpetol 50:196–202

    Google Scholar 

  • Penning DA, Dartez SF (2016) Size, but not experience, affects the ontogeny of constriction performance in ball pythons (Python regius). J Exp Zool 325A:194–199

    Google Scholar 

  • Penning DA, Moon BR (2017) The king of snakes: performance and morphology of intraguild predators (Lampropeltis) and their prey (Pantherophis). J Exp Biol 220:1154–1161

    PubMed  Google Scholar 

  • Penning DA, Dartez SF, Moon BR (2015) The big squeeze: scaling of constriction pressure in two of the world’s largest snakes, Python reticulatus and P. molurus bivittatus. J Exp Biol 218:2264–3367

    Google Scholar 

  • Penning DA, Sawvel B, Moon BR (2016) Debunking the viper’s strike: harmless snakes kill a common assumption. Biol Lett 12:2016011

    Google Scholar 

  • Pereira SC, Rodrigues JFM, Borges-Nojosa DM (2016) Single large or several small? The influence of prey size on feeding performance of Philodryas nattereri (Squamata: Serpentes). Acta Scientiarum 38:25–28

    Google Scholar 

  • Phillips BL, Shine R (2004) Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc Natl Acad Sci USA 101:17150–17155

    CAS  PubMed  Google Scholar 

  • Pough FH (1980) The advantages of ectothermy for tetrapods. Am Nat 115:92–112

    Google Scholar 

  • Pough FH, Groves JD (1983) Specializations of the body form and food habits of snakes. Am Zool 23:443–454

    Google Scholar 

  • Povel D, Jvd Kooij (1997) Scale sensillae of the file snake (Serpentes: Acrochordidae) and some other aquatic and burrowing snakes. Neth J Zool 47:443–456

    Google Scholar 

  • Pyron RA, Burbrink FT, Wiens JJ (2013) A phylogeny and revised classification of Squamata including 4161 species of lizards and snakes. BMC Evol Biol 13:93

    PubMed  PubMed Central  Google Scholar 

  • Queral-Regil A, King RB (1998) Evidence for phenotypic plasticity in snake body size and relative head dimensions in response to amount and size of prey. Copeia 1998:423–429

    Google Scholar 

  • Radcliffe CW, Chiszar DA (1980) A descriptive analysis of predatory behavior in the yellow lipped sea krait (Laticauda colubrina). J Herpetol 14:422–424

    Google Scholar 

  • Randall JA, Matocq MD (1997) Why do kangaroo rats (Dipodomys spectabilis) footdrum at snakes? Behav Ecol 8:404–413

    Google Scholar 

  • Rieppel O (1988) A review of the origin of snakes. In: Hecht MK, Wallace B, Prance GT (eds) Evolutionary biology, vol 22. Plenum, New York

    Google Scholar 

  • Rieppel O, Kley NJ, Maisano JA (2009) Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). J Morphol 270:536–557

    PubMed  Google Scholar 

  • Rivas JA (2004) Eunectes murinus (green anaconda). Subduing behavior. Herp Rev 35:66–67

    Google Scholar 

  • Ruane S (2015) Using geometric morphometrics for integrative taxonomy: an examination of head shapes of milksnakes (genus Lampropeltis). Zool J Linn Soc 174:394–413

    Google Scholar 

  • Rudolph DC, Burgdorf SJ, Conner RN, Collins CS, Saenz D, Schaefer RR, Trees T, Duran CM, Ealy M, Himes JG (2002) Prey handling and diet of Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi), with comparisons to other colubrid snakes. Herpetol Nat Hist 9:57–62

    Google Scholar 

  • Sanders KL, Rasmussen AR, Mumpuni Elmberg J, De Silva A, Guinea ML, Lee MSY (2013) Recent rapid speciation and ecomorph divergence in Indo-Australian sea snakes. Mol Ecol 22:2742–2759

    PubMed  Google Scholar 

  • Sasa M (1999a) Diet and snake venom evolution: can local selection alone explain intraspecifc venom variation? Toxicon 37:249–252

    CAS  PubMed  Google Scholar 

  • Sasa M (1999b) Reply. Toxicon 37:259–260

    CAS  Google Scholar 

  • Saviola AJ, Chiszar D, Busch C, Mackessy SP (2013) Molecular basis for prey relocation in viperid snakes. BMC Biol 11:20

    PubMed  PubMed Central  Google Scholar 

  • Scanferla A (2016) Postnatal ontogeny and the evolution of macrostomy in snakes. R Soc Open Sci 3:160612

    PubMed  PubMed Central  Google Scholar 

  • Scanlon JD (2012) Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature 439:839–842

    Google Scholar 

  • Schuett GW, Hardy DLSr, Earley RL, Greene HW (2005) Does prey size induce head skeleton phenotyic plasticity during early ontogeny in the snake Boa constrictor. J Zool 267:363–369

    Google Scholar 

  • Schwenk K (1994) Why snakes have forked tongues. Science 263:1573–1577

    CAS  PubMed  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol 179:1–56

    Google Scholar 

  • Secor SM, Diamond J (1995) Adaptive responses to feeding in Burmese pythons: pay before pumping. J Exp Biol 198:1313–1325

    CAS  PubMed  Google Scholar 

  • Secor SM, White SE (2010) Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. J Exp Biol 213:78–88

    PubMed  Google Scholar 

  • Secor SM, Jayne BC, Bennett AF (1992) Locomotor performance and energetic cost of sidewinding by the snake Crotalus cerastes. J Exp Biol 163:1–14

    Google Scholar 

  • Secor SM, Hicks JW, Bennett AF (2000) Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol 203:2447–2454

    CAS  PubMed  Google Scholar 

  • Secor SM, Taylor JR, Grosell M (2012) Selected regulation of gastrointestinal acid–base secretion and tissue metabolism for the diamondback water snake and Burmese python. J Exp Biol 215:185–196

    CAS  PubMed  Google Scholar 

  • Segall M, Cornette R, Fabre A-C, Godoy-Diana R, Herrel A (2016) Does aquatic foraging impact head shape evolution in snakes? Proc R Soc B 283:20161645

    PubMed  Google Scholar 

  • Shine R, Schwaner T (1985) Prey constriction by venomous snakes: a review, and new data on Australian species. Copeia 1985:1067–1071

    Google Scholar 

  • Shine R, Thomas J (2005) Do lizards and snakes really differ in their ability to take large prey? A study of relative prey mass and feeding tactics in lizards. Oecologia 144:492–498

    PubMed  Google Scholar 

  • Shine R, Sun L-X, Fitzgerald M, Kearney M (2002) Antipredator responses of free-ranging pit vipers (Gloydius shedaoensis, Viperidae). Copeia 2002:843–850

    Google Scholar 

  • Simoes BF, Sampaio FL, Jared C, Antoniazzi MM, Loew ER, Bowmaker JK, Rodriguez A, Hart NS, Hunt DM, Partridge JC, Gower DJ (2015) Visual system evolution and the nature of the ancestral snake. J Evol Biol 28:1309–1320

    CAS  PubMed  Google Scholar 

  • Smith MT (2014) Induction of phenotypic plasticity in rattlesnake trophic morphology by diet manipulation. J Morphol 275:1339–1348

    PubMed  Google Scholar 

  • Smith TL, Povel GDE, Kardong KE (2002) Predatory strike of the tentacled snake (Erpeton tentaculatum). J Zool 256:233–242

    Google Scholar 

  • Stevenson DJ, Norton TM, Bolt MR, Smith DJ, Enge KM, Hyslop NL, Dyer KJ (2010) Prey records for the eastern indigo snake (Drymarchon couperi). Southeastern Nat 9:1–18

    Google Scholar 

  • Thomas RG, Pough FH (1979) The effects of rattlesnake venom on the digestion of prey. Toxicon 17:221–228

    CAS  PubMed  Google Scholar 

  • Underwood G (1997) An overview of venomous snake evolution. In: Thorpe RS, Wüster W, Malhotra A (eds) Venomous snakes: ecology, evolution, and snakebite. Symp Zool Soc Lond, No. 70. Clarendon Press, Oxford, pp 1–13

    Google Scholar 

  • Urdaneta AH, Bolaños F, Gutiérrez JM (2004) Feeding behavior and venom toxicity of coral snake Micrurus nigrocinctus (Serpentes: Elapidae) on its natural prey in captivity. Comp Biochem Physiol C 138:485–492

    Google Scholar 

  • Valkonen JK, Nokelainen O, Mappes J (2011) Antipredatory function of head shape for vipers and their mimics. PLoS ONE 6:e22272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Riper W (1954) Measuring the speed of a rattlesnake’s strike. Animal Kingdom 57:50–53

    Google Scholar 

  • Van Wassenbergh S, Brecko J, Aerts P, Stouten I, Vanheusden G, Camps A, Van Damme R, Herrel A (2010) Hydrodynamic constraints on prey-capture performance in forward-striking snakes. J R Soc Interface 7:773–785

    Google Scholar 

  • Vincent SE, Herrel A (2007) Functional and ecological correlates of ecologically-based dimorphisms in squamate reptiles. Integr Comp Biol 47:172–188

    PubMed  Google Scholar 

  • Vincent SE, Mori A (2008) Determinants of feeding performance in free-ranging pit-vipers (Viperidae: Ovophis okinavensis): key roles for head size and body temperature. Biol J Linn Soc 93:53–62

    Google Scholar 

  • Vincent SE, Herrel A, Irschick DJ (2004) Ontogeny of intersexual head shape and prey selection in the pitviper Agkistrodon piscivorous. Biol J Linn Soc 81:151–159

    Google Scholar 

  • Vincent SE, Herrel A, Irschick DJ (2005) Comparisons of aquatic versus terrestrial predatory strikes in the pitviper, Agkistrodon piscivorus. J Exp Zool 303A:476–488

    Google Scholar 

  • Vincent SE, Dang PD, Herrel A, Kley NJ (2006a) Morphological integration and adaptation in the snake feeding system: a comparative phylogenetic study. J Evol Biol 19:1545–1554

    CAS  PubMed  Google Scholar 

  • Vincent SE, Vincent P-D, Irschick DJ, Rossell JM (2006b) Do juvenile gape-limited predators compensate for their small size when feeding. J Zool 268:279–284

    Google Scholar 

  • Vincent SE, Moon BR, Herrel A, Kley NJ (2007) Are ontogenetic shifts in diet linked to shifts in feeding mechanics? Scaling of the feeding apparatus in the banded watersnake Nerodia fasciata. J Exp Biol 210:2057–2069

    PubMed  Google Scholar 

  • Vincent SE, Brandley MC, Herrel A, Alfaro ME (2009) Convergence in trophic morphology and feeding performance among piscivorous natricine snakes. J Evol Biol 22:1203–1211

    CAS  PubMed  Google Scholar 

  • Voris HK, Voris HH (1983) Feeding strategies in marine snakes: an analysis of evolutionary, morphological, behavioral and ecological relationships. Am Zool 23:411–425

    Google Scholar 

  • Walton M, Jayne BC, Bennett AF (1990) The energetic cost of limbless locomotion. Science 249:524–527

    CAS  PubMed  Google Scholar 

  • Welsh HH Jr, Lind AJ (2000) Evidence of lingual-luring by an aquatic snake. J Herpetol 34:67–74

    Google Scholar 

  • Werler JE, Dixon JR (2000) Texas snakes: identification, distribution, and natural history. University of Texas Press, Austin

    Google Scholar 

  • Westhoff G, Fry BG, Bleckmann H (2005) Sea snakes are sensitive to low-amplitude water motions. Zoology 108:195–200

    PubMed  Google Scholar 

  • Whitaker PB, Ellis K, Shine R (2000) The defensive strike of the eastern brownsnake, Pseudonaja textilis (Elapidae). Funct Ecol 14:25–31

    Google Scholar 

  • Willard DE (1977) Constricting methods of snakes. Copeia 1977:379–382

    Google Scholar 

  • Wilson JD, Hopkins WA (2011) Prey morphology constrains the feeding ecology of an aquatic generalist predator. Ecology 92:744–754

    Google Scholar 

  • Wüster W, Daltry JC, Thorpe RS (1999) Can diet explain intraspecific venom variation? Reply to Sasa. Toxicon 37:253–258

    Google Scholar 

  • Yi H, Norell MA (2015) The burrowing origin of modern snakes. Sci Adv 1:e1500743

    PubMed  PubMed Central  Google Scholar 

  • Young BA (1991) The influences of the aquatic medium on the prey capture system of snakes. J Nat Hist 25:519–531

    Google Scholar 

  • Young BA (2003) Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. Quart Rev Biol 78:303–325

    PubMed  Google Scholar 

  • Young BA (2007) Response of the yellow anaconda (Eunectes notaeus) to aquatic acoustic stimuli. In: Henderson RW, Powell R (eds) Biology of the boas and pythons. Eagle Mountain Publishing, Utah, pp 199–205

    Google Scholar 

  • Young BA (2010) How a heavy-bodied snake strikes quickly: high-power axial musculature in the Puff Adder (Bitis arietans). J Exp Zool 313A:114–121

    Google Scholar 

  • Young BA, Aguiar A (2002) Response of western diamondback rattlesnakes Crotalus atrox to airborne sounds. J Exp Biol 205:3087–3092

    PubMed  Google Scholar 

  • Young BA, Kardong KV (2007) Mechanisms controlling venom expulsion in the western diamondback rattlesnake, Crotalus atrox. J Exp Zool 307A:18–27

    Google Scholar 

  • Young BA, Morain M (2002) The use of ground-borne vibrations for prey localization in the Saharan sand vipers (Cerastes). J Exp Biol 205:661–665

    PubMed  Google Scholar 

  • Young BA, Zahn K (2001) Venom flow in rattlesnakes: mechanics and metering. J Exp Biol 204:4345–4351

    CAS  PubMed  Google Scholar 

  • Young BA, Zahn K, Blair M, Lalor J (2000) Functional subdivision of the venom gland musculature and the regulation of venom expulsion in rattlesnakes. J Morphol 246:249–259

    CAS  PubMed  Google Scholar 

  • Young BA, Blair M, Zahn K, Marvin J (2001a) Mechanics of venom expulsion in Crotalus, with special reference to the role of the fang sheeth. Anat Rec 264:415–426

    CAS  PubMed  Google Scholar 

  • Young BA, Phelan M, Jaggers J, Nejman N (2001b) Kinematic modulation of the strike of the western diamondback rattlesnake (Crotalus atrox). Hamadryad 26:316–349

    Google Scholar 

  • Zaher H, de Oliveira L, Grazziotin FG, Campagner M, Jared C, Antoniazzi MM, Prudente ALC (2014) Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes. BMC Evol Biol 14:58

    PubMed  PubMed Central  Google Scholar 

  • Zug GR (1993) Herpetology: an introductory biology of amphibians and reptiles. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgements

We wish to thank Vincent Bels for inviting us to write this book chapter, and Stephen Deban, Paul Hampton, Timothy Higham, and Katherine Wadsworth for helpful input. We thank Raoul Van Damme and one anonymous reviewer for helpful and constructive comments on the manuscript. M. S. thanks the Région Ile de France, the doctoral school Frontières du Vivant (FdV), Programme Bettencourt, and the Fyssen Foundation for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad R. Moon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moon, B.R., Penning, D.A., Segall, M., Herrel, A. (2019). Feeding in Snakes: Form, Function, and Evolution of the Feeding System. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_14

Download citation

Publish with us

Policies and ethics