Skip to main content

Mashing

  • Chapter
  • First Online:
Whisky Science
  • 2052 Accesses

Abstract

Mashing is the process of converting malt to a sugar-rich fermentable liquor or wort. Malt grains are first broken, typically by roller mills or hammer mills, to expedite the interaction of mash water with the modified endosperm. The broken grains, or grist, are mixed with hot water which first softens (gelatinizes) and ultimately liquifies the starch, and which activates enzymes that break the starch into fermentable sugars. At the end of an all-malt barley process, spent grains are separated from the sugary wort by filtering the wort through a filter bed comprised of the barley’s husks.

Your utensils being all properly cleaned, and scalded, your malt ground, your water in the copper boiling, and your penstaff 1 well set, you must then proceed to mash, by putting sufficient quantity of boiling water into your tub, in which it must stand until the greater part of the steam is gone off, or till you can see your own shadow in it. It will be then necessary, that one person should pour the malt gently in, while another is carefully stirring it; for it is equally essential that the same care should be observed when the mash is thin as when thick. This being effectually done, and having sufficient reserve of malt to cover the mash, to prevent evaporation, you may cover your tub with sacks, &c. and leave your malt three hours to steep, which will be a proper time for the extraction of its virtues.

– William Augustus Henderson, 1793 [344]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Drain plug.

References

  1. Andrewartha KA, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymatically modified arabinoxylans. Carbohydr Res 77:191–204

    Article  CAS  Google Scholar 

  2. Badings HT (1970) Cold-storage defects in butter and their relation to the autoxidation of unsaturated fatty acids. Neth Milk Dairy J 24:149–256

    Google Scholar 

  3. Bamforth CW, Lentini A (2009) The flavor instability of beer. In: Bamforth CW (ed) Beer: a quality perspective, Elsevier, Amsterdam

    Google Scholar 

  4. Bathgate GN (2016) A review of malting and malt processing for whisky distillation. J Inst Brew 122:197–211

    Article  CAS  Google Scholar 

  5. Belitz H-D, Grosch W (1999) Food chemistry. Springer, New York

    Book  Google Scholar 

  6. Biliaderis CG, Maurice TJ, Vose JR (1980) Starch gelatinization phenomena studied by differential calorimetry. J Food Sci 45:1669–1674

    Article  Google Scholar 

  7. Brandam C, Meyer XM, Proth J, Strehaiano P, Pingaud H (2003) An original kinetic model for the enzymatic hydrolysis of starch during mashing. Biochem Engr J 13:43–52

    Article  CAS  Google Scholar 

  8. Briggs DE (1998) Malts and malting. Blackie Academic & Professional, New York

    Google Scholar 

  9. Briggs DE, McGuinness G (1992) Microbes on barley grains. J Inst Brew 98:249–255

    Google Scholar 

  10. Bringhurst TA, Brosnan J (2014) Scotch whisky: raw material selection and processing. In: Russell I, Stewart G (eds) Whisky technology, production and marketing, 2nd edn. Academic Press, New York, p 49–122

    Google Scholar 

  11. Brown HT (1910) On the specific heat of malt, and the calculation of the “initial heat” of the mash. J Inst Brew 16:112–129

    Article  Google Scholar 

  12. Brown HT, Morris GH (1899) The relation of the “initial heat” of the mash to the “striking heat”. J Inst Brew 5:338–354

    Google Scholar 

  13. Buckee GK, Malcolm PT, Peppard TL (1982) Evolution of volatile compounds during wort-boiling. J Inst Brew 88:175–181

    Article  CAS  Google Scholar 

  14. Burros BC, Young LA, Carroad PA (1987) Kinetics of corn meal gelatinization at high temperature and low moisture content. J Food Sci 52:1372–1376

    Article  Google Scholar 

  15. Buttery RG, Seifert RM, Guadagni DG, Ling LC (1971) Characterization of additional volatile components of tomato. J Agric Food Chem 19:524–529

    Article  CAS  Google Scholar 

  16. Cabrera E, Pineda JC, Duiran de Bazua C, Segurajauregui JS, Vernon EJ (1984) Kinetics of water diffusion and starch gelatinization during corn nixtamalization. In: McKenna BM (ed) Engineering and food, vol 1. Elsevier, New York

    Google Scholar 

  17. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    CAS  Google Scholar 

  18. Chen C-L (1970) Constituents of Quercus alba. Phytochemistry 9:1149

    Article  CAS  Google Scholar 

  19. Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153

    Article  Google Scholar 

  20. Courtin CM, Broekaert WF, Swennen K, Aerts G, Van Craeyveld V, Delcour JA (2009) Occurrence of arabinoxylo-oligosaccharides and arabinogalactan peptides in beer. J Am Soc Brew Chem 67:112–147

    CAS  Google Scholar 

  21. Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris

    Google Scholar 

  22. Debye P (1946) The intrinsic viscosity of polymer solutions. J Chem Phys 14:636–639

    Article  CAS  Google Scholar 

  23. Dolan TCS (2003) Malt whiskies: raw materials and processing. In: Russell I (ed) Whisky technology, production and marketing, 2nd edn. Academic Press, New York, p 27–73

    Google Scholar 

  24. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    CAS  Google Scholar 

  25. Evans DE, Goldsmith M, Redd KS, Nischwitz R, Lentini A (2012) Impact of mashing conditions on extract, its fermentability, and the levels of wort free amino nitrogen (FAN), β-glucan, and lipids. J Am Soc Brew Chem 70:39–49

    CAS  Google Scholar 

  26. Fredriksson H, Silverio J, Andersson R, Eliasson A-C, Åman P (1998) The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polymers 35:119–134

    Article  CAS  Google Scholar 

  27. Gallant DJ, Bouchet B, Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr Polymers 32:177–191

    Article  CAS  Google Scholar 

  28. Greenwood CT, Thomson J (1959) A comparison of the starches from barley and malted barley. J Inst Brew 65:346–353

    Article  CAS  Google Scholar 

  29. Hagues G, Russell J (1949) Volumenometer methods I. Density of barley and malt. J Inst Brew 55:110–112

    CAS  Google Scholar 

  30. Hall H (1813) Hall’s distiller. John Bioren, Philadelphia

    Google Scholar 

  31. Harris G, Ricketts RW (1958) Studies on non-biological hazes of beers III. Isolation of polyphenols and phenolic acids of malt husk. J Inst Brew 64:22–32

    Google Scholar 

  32. Henderson WA (1793) The housekeeper’s instructor, 6th edn. W. and J. Stratford, London

    Google Scholar 

  33. Hopkins RH, Carter WA (1933) The influence of slack malt on the composition of wort. Part I. J Inst Brew 39:59–70

    Article  CAS  Google Scholar 

  34. Huige NJ, Westermann DH (1975) Effect of malt particle size distribution on mashing and lautering performance. MBAA Tech Q 12:31–40

    Google Scholar 

  35. Inoue M, LePoutre P (1986) Kinetics of gelatinization of cornstarch adhesive. J Appl Polym Sci 31:2779–2789

    Article  CAS  Google Scholar 

  36. Izydorczyk MS, Dexter JE (2008) Barley β-glucans and arabinoxylans: molecular structure, physiochemical properties, and uses in food products. Food Res Int 41:850–868

    Article  CAS  Google Scholar 

  37. Joule JP (1850) On the mechanical equivalent of heat. Philos Trans R Soc Lond 140:61–82

    Article  Google Scholar 

  38. Koljonen T, Hämäläinen JJ, Sjöholm K, Pietilä K (1995) A model for the prediction of fermentable sugar concentrations during mashing. J Food Eng 26:329–350

    Article  Google Scholar 

  39. Laitila A, Manninen J, Priha O, Smart K, Tsitko I, James S (2018) Characterisatoin of barley-associated bacteria and their impact on wort separation performance. J Inst Brew 124:314–324

    Article  CAS  Google Scholar 

  40. LaRoe EG, Shipley PA (1970) Whiskey composition: formation of alpha– and beta ionone by the thermal decomposition of beta-carotene. J Agric Food Chem 18:174–175

    Article  CAS  Google Scholar 

  41. Lehtonen M, Aikasalo R (1987) Beta glucan in two and six row barley. Cereal Chem 64:191–193

    CAS  Google Scholar 

  42. Lehtonen M, Aikasalo R (1987) Pentosans in barley varieties. Cereral Chem 64:133–134

    CAS  Google Scholar 

  43. Li Y, Lu J, Gu G (2005) Control of arabinoxylan solubilization and hydrolysis in mashing. Food Chem 90:101–108

    Article  CAS  Google Scholar 

  44. Liu Y, Selomulyo VO, Zhou W (2008) Effect of high pressure on some physiochemical properties of several native starches. J Food Eng 88:126–136

    Article  CAS  Google Scholar 

  45. Marc A, Engasser JM, Moll M, Flayeux R (1983) A kinetic model of starch hydrolysis by α- and β-amylase during mashing. Biotechnol Bioeng 25:481–496

    Article  CAS  Google Scholar 

  46. M’Harry S (1809) The practical distiller. John Wyeth, Harrisburgh

    Google Scholar 

  47. Mould DL (1954) Potentiometric and spectrophotometric studies of complexes of hydrolysis products of amylose with iodine and potassium iodide. Biochem J 58:593–600

    Article  CAS  Google Scholar 

  48. Mullins JT, NeSmith C (1988) Nitrogen levels and yeast viability during ethanol fermentation of grain sorghum containing condensed tannins. Biomass 16:77–87

    Article  CAS  Google Scholar 

  49. Naguleswaran S, Vasanthan T, Hoover R, Bressler D (2013) The susceptibility of large and small granules of waxy, normal, and high-amylose genotypes of barley and corn starches toward amylolysis at sub-gelatinization temperatures. Food Res Int 51:771–782

    Article  CAS  Google Scholar 

  50. Niemcewicz JU (1965) Under their vine and fig tree: travels through America in 1797–1799, 1805 with some further account of life in New Jersey (trans: Budka MJE). Grassmann, Elizabeth, New Jersey

    Google Scholar 

  51. Noordermeer MA, Veldink GA, Vliegenthart JFG (2001) Fatty acid hydroperoxidase lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2:494–504

    Article  CAS  Google Scholar 

  52. Oates CG (1997) Towards and understanding of starch granule structure and hydrolysis. Trends Food Sci Technol 8:375–382

    Article  CAS  Google Scholar 

  53. Osman AM (2002) The advantages of using natural substrate-based methods in assessing the roles and synergistic and competitive interactions of barley malt starch-degrading enzymes. J Inst Brew 108:204–214

    Article  CAS  Google Scholar 

  54. Paterson A, Swanston JS, Piggott JR (2003) Production of fermentable extracts from cereals and fruits. In: Lea AGH, Piggott JR (eds) Fermented beverage production, 2nd edn, Kluwer, New York, p 1–24

    Google Scholar 

  55. Piggott JR, Conner JM (2003) Whiskies. In: Lea AGH, Piggott JR (eds) Fermented beverage production, 2nd edn, Kluwer, New York, p 239–262

    Chapter  Google Scholar 

  56. Popov D, Buléon A, Burghammer M, Chanzy H, Montesanti N, Putaux J- L, Potocki-Véronèse G, Riekel C (2009) Cyrstal structure of A-amylose: A revisit from synchrotron microdiffraction analysis of single crystals. Macromolecules 42:1167–1174

    Article  CAS  Google Scholar 

  57. Pravisani CI, Califano AN, Calvelo A (1985) Kinetics of starch gelatinization in potato. J Food Sci 50:657–660

    Article  Google Scholar 

  58. Ronkainen P (1973) The formation of volatile sulphur compounds during pressure cooking of grain/water mixtures. J Inst Brew 79:200–202

    Article  CAS  Google Scholar 

  59. Rouse PE Jr (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  60. Rubens P, Heremans K (2000) Pressure-temperature gelatinization phase diagram of starch: an in situ Fourier transform infrared study. Biopolymers 54:524–530

    Article  CAS  Google Scholar 

  61. Rundle RE, Edwards FC (1943) The configuration of starch in the starch-iodine complex. IV. An X-ray diffraction investigation of butanol-precipitated amylose. J Am Chem Soc 65:2200–2203

    CAS  Google Scholar 

  62. Sablani SS, Kasapis S, Al-Tarqe ZH, Al-Marhubi I, Al-Khuseibi M, Al-Khabori T (2007) Isobaric and isothermal kinetics of gelatinization of waxy maize starch. J Food Eng 82:443–449

    Article  Google Scholar 

  63. Schoch TH, Maywald EC (1956) Microscopic examination of modified starches. Anal Chem 28:382–387

    Article  CAS  Google Scholar 

  64. Schwarz PB, Li Y, Barr J, Horsley RD (2007) Effect of operational parameters on the determination of laboratory extract and associated wort quality factors. J Am Soc Brew Chem 65:219–228

    CAS  Google Scholar 

  65. Scott RW (1972) The viscosity of worts in relation to their content of β-glucan. J Inst Brew 78:179–186

    Article  Google Scholar 

  66. Smith MM, Hartley RD (1983) Occurrence and nature of ferulic acid substitution of cell-wall polysaccharides in graminaceous plants. Carbohydr Res 118:65–80

    Article  CAS  Google Scholar 

  67. Steinke RD, Paulson MC (1964) Phenols from grain. The production of steam-volatile phenols during the cooking and alcoholic fermentation of grain. J Agric Food Chem 12:381–387

    CAS  Google Scholar 

  68. Tang H, Mitsunaga T, Kawamura Y (2006) Molecular arrangement in blocklets and starch granule architecture. Carbohydr Polym 63:555–560

    Article  CAS  Google Scholar 

  69. Tewari YB, Goldberg RN (1989) Thermodynamics of hydrolysis of disaccharides—cellobiose, gentiobiose, isomaltose, and maltose. J Biol Chem 264:3966–3971

    CAS  PubMed  Google Scholar 

  70. Vanbeneden N, van Roey T, Willems F, Delvaux F, Delvaux FR (2008) Release of phenolic flavour precursors during wort production: influence of process parameters and grist composition on ferlulic acid release during brewing. Food Chem 111:83–91

    Article  CAS  Google Scholar 

  71. Vanderhaegen B, Neven H, Verachtert H, Derdelinckx G (2006) The chemistry of beer aging—a critical review. Food Chem 95:357–381

    Article  CAS  Google Scholar 

  72. Viëtor RJ, Kormelink FJM, Angelino SAGF, Voragen AGJ (1994) Substitution patterns of water-unextractable arabinoxylans from barley and malt. Carbohydr Polym 24:113–118

    Article  Google Scholar 

  73. Vis RB, Lorenz K (1998) Malting and brewing with a high β-glucan barley. Lebensm Wiss Technol 31:20–26

    Article  CAS  Google Scholar 

  74. Willkie HF, Prochaska JA (1943) Fundamentals of distillery practice. Joseph E. Seagram & Sons, Louisville

    Google Scholar 

  75. Wilson CA (2008) The role of water composition on malt spirit quality. PhD thesis, Heriot-Watt

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, G.H. (2019). Mashing. In: Whisky Science. Springer, Cham. https://doi.org/10.1007/978-3-030-13732-8_4

Download citation

Publish with us

Policies and ethics