Skip to main content

FEM with Floquet Theory for Non-slender Elastic Columns Subject to Harmonic Applied Axial Force Using 2D and 3D Solid Elements

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

  • 551 Accesses

Abstract

The Rayleigh–Ritz formulation of finite element method using solid elements is implemented for a 2D and 3D clamped-clamped column which is subject to a periodically applied axial force. Non-linear strain is considered. A mass element matrix and two stiffness matrices are obtained. After assembly by elements, the calculated natural frequencies and buckling loads are compared to Euler–Bernoulli beam theory predictions. For 2D triangular and 3D cuboid elements, a large number of degrees of freedom are required for sufficient convergence which adds particular computational costs to applying Floquet theory to determine stability of the harmonically forced column. A method popularised by Hsu et al. is used to reduce the computational load and obtain the full monodromy matrix. The Floquet multipliers are discussed in relation to their bifurcations. The versatile 2D and 3D elements used allows for the discussion of non-slender columns. In addition, the stability of a 3D steel column comprised of impure materials or with changed aspect ratio are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anilkumar, A., Kartik, V.: In-plane parametric instability of a rigid body with a dual-rotor system. In: ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2015)

    Google Scholar 

  2. Barsoum, R.S., Gallagher, R.H.: Finite element analysis of torsional and torsional-flexural stability problems. Int. J. Numer. Methods Eng. 2(3), 335–352 (1970)

    Article  Google Scholar 

  3. Board, O.A.R.: OpenMP Application Programming Interface (2015). http://openmp.org/

  4. Chen, C.-C., Yeh, M.-K.: Parametric instability of a beam under electromagnetic excitation. J. Sound Vib. 240(4), 747–764 (2001)

    Article  MathSciNet  Google Scholar 

  5. Dohnal, F.: A Contribution to the Mitigation of Transient Vibrations: Parametric Anti-resonance; Theory, Experiment and Interpretation (2012)

    Google Scholar 

  6. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)

    Article  MathSciNet  Google Scholar 

  7. Dufour, R., Berlioz, A.: Parametric instability of a beam due to axial excitations and to boundary conditions. J. Vib. Acoust. 120(2), 461–467 (1998)

    Article  Google Scholar 

  8. Evan-Iwanowski, R.M.: On the parametric response of structures(parametric response of structures with periodic loads). Appl. Mech. Rev. 18, 699–702 (1965)

    Google Scholar 

  9. Evan-Iwanowski, R.: Resonance Oscillations in Mechanical Systems. North-Holland (1976)

    Google Scholar 

  10. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Annales scientifiques de l’École normale supérieure 12, 47–88 (1883)

    Article  MathSciNet  Google Scholar 

  11. Friedmann, P., Hammond, C., Woo, T.-H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11(7), 1117–1136 (1977)

    Article  MathSciNet  Google Scholar 

  12. Gough, B.: GNU Scientific Library Reference Manual. Network Theory Ltd. (2009)

    Google Scholar 

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  14. Hagedorn, P., DasGupta, A.: Vibrations and Waves in Continuous Mechanical Systems. Wiley, New York (2007)

    Book  Google Scholar 

  15. Hagedorn, P., Koval, L.R.: On the parametric stability of a Timoshenko beam subjected to a periodic axial load. Arch. Appl. Mech. 40(3), 211–220 (1971)

    MATH  Google Scholar 

  16. Hansen, J.: Stability diagrams for coupled Mathieu-equations. Ing.-Arch. 55(6), 463–473 (1985)

    Google Scholar 

  17. Hsu, C.: On approximating a general linear periodic system. J. Math. Anal. Appl. 45(1), 234–251 (1974)

    Article  MathSciNet  Google Scholar 

  18. Iwatsubo, T., Saigo, M., Sugiyama, Y.: Parametric instability of clamped-clamped and clamped-simply supported columns under periodic axial load. J. Sound Vib. 301, 65–IN2 (1973)

    Google Scholar 

  19. Iwatsubo, T., Sugiyama, Y., Ishihara, K.: Stability and non-stationary vibration of columns under periodic loads. J. Sound Vib. 23(2), 245–257 (1972)

    Article  Google Scholar 

  20. Iwatsubo, T., Sugiyama, Y., Ogino, S.: Simple and combination resonances of columns under periodic axial loads. J. Sound Vib. 33, 211–221 (1974)

    Article  Google Scholar 

  21. Kang, J.: Moving mode shape function approach for spinning disk and asymmetric disc brake squeal. J. Sound Vib. 424, 48–63 (2018)

    Article  Google Scholar 

  22. Kirchgäßner, B.: Finite Elements in Rotordynamics. Procedia Eng. 144, 736–750 (2016)

    Article  Google Scholar 

  23. Klíč, A.: Period doubling bifurcations in a two-box model of the brusselator. Apl. Mat. 28(5), 335–343 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Labuschagne, A., van Rensburg, N.F.J., Van der Merwe, A.J.: Comparison of linear beam theories. Math. Comput. Model. 49(1), 20–30 (2009)

    Article  MathSciNet  Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics Vol 7: Theory of Elasticity. Pergamon Press, Oxford (1970)

    Google Scholar 

  26. Lee, H.: Dynamic stability of a moving column subject to axial acceleration and force perturbations. Eng. Comput. 12(7), 609–618 (1995)

    Article  Google Scholar 

  27. Lee, H.: Dynamic stability of spinning pre-twisted beams subject to axial pulsating loads. Comput. Methods Appl. Mech. Eng. 127(1–4), 115–126 (1995)

    Article  Google Scholar 

  28. Li, S.-R., Batra, R.C.: Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Compos. Struct. 95, 5–9 (2013)

    Article  Google Scholar 

  29. Martin, H.C.: On the derivation of stiffness matrices for the analysis of large deflection and stability problems. Matrix Methods Struct. Mech. 80, 697–716 (1966)

    Google Scholar 

  30. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  Google Scholar 

  31. Nikolaev, E.V.: Bifurcations of limit cycles of differential equations admitting an involutive symmetry. Sbornik: Math. 186(4), 611 (1995)

    Google Scholar 

  32. Oden, J.T., Reddy, J.N.: An Introduction to the Mathematical Theory of Finite Elements. Dover Publications, Mineola (2012)

    MATH  Google Scholar 

  33. Rao, S., Gupta, R.: Finite element vibration analysis of rotating Timoshenko beams. J. Sound Vib. 242(1), 103–124 (2001)

    Google Scholar 

  34. Talimian, A., Beda, P.: Dynamic stability of a thin plate subjected to bi-axial edged loads. Acta Polytech. Hung. 15(2), 125–139 (2018)

    MATH  Google Scholar 

  35. Vanderbauwhede, A.: Local Bifurcation and Symmetry, vol. 75. Pitman Advanced Publishing Program, Boston (1982)

    MATH  Google Scholar 

  36. Walter, W.: Ordinary Differential Equations. Graduate Texts in Mathematics, vol. 182. Springer, Berlin (1998)

    MATH  Google Scholar 

  37. Weichert, D., Maier, G.: Inelastic Behaviour of Structures Under Variable Repeated Loads: Direct Analysis Methods, vol. 432. Springer, Berlin (2014)

    MATH  Google Scholar 

  38. Weidenhammer, F.: Der eingespannte, achsial pulsierend belastete Stab als Stabilitätsproblem. Arch. Appl. Mech. 19(3), 162–191 (1951)

    Google Scholar 

  39. White, R.E.: An Introduction to the Finite Element Method with Applications to Nonlinear Problems. Wiley, New York (1985)

    MATH  Google Scholar 

  40. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. The Finite Element Method. Elsevier Science, New York (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin Clerkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clerkin, E., Rieken, M. (2019). FEM with Floquet Theory for Non-slender Elastic Columns Subject to Harmonic Applied Axial Force Using 2D and 3D Solid Elements. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics