Skip to main content

A Numerical Study on Free Hovering Fruit-Fly with Flexible Wings

  • Conference paper
  • First Online:

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

Abstract

Insect flyers have drawn the attention of many biologists, mechanists and engineers due to their unparalleled manoeuvrability. In this article, we introduce a comprehensive FSI model to investigate a model fruit-fly with flexible wings. We then apply the model in the numerical study of the interaction between aerodynamic and structural processes in free hovering flight. The model fruit-fly is allowed to fly with six-degrees of freedom (6-DoF) and hovers steadily with active wing kinematic control. The present study provides a convenient approach to track the dynamic deformation of flexible wings and the instantaneous aerodynamic forces and power in free flight. The results of hovering flight simulations show that the flexibility of insect wing allows the wing to bend and passively adapt to the detaching direction of leading-edge vortices (LEVs), which helps to enhance lift force and reduce the aerodynamic power consumption in free flight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wang, Z.J.: Dissecting insect flight. Annu. Rev. Fluid Mech. 37(1), 183–210 (2005)

    Article  MathSciNet  Google Scholar 

  2. Wu, T.Y.: Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43(1), 25–58 (2011)

    Article  MathSciNet  Google Scholar 

  3. Sun, M.: Insect flight dynamics stability and control. Rev. Mod. Phys. 86(2), 615–646 (2014)

    Article  Google Scholar 

  4. Wu, D., Yeo, K.S., Lim, T.T.: A numerical study on the free hovering flight of a model insect at low Reynolds number. Comput. Fluids 103, 234–261 (2014)

    Article  MathSciNet  Google Scholar 

  5. Nakata, T., Liu, H.: A fluid-structure interaction model of insect flight with flexible wings. J. Comput. Phys. 231(4), 1822–1847 (2012)

    Article  MathSciNet  Google Scholar 

  6. Nguyen, T.T., Shyam Sundar, D., Yeo, K.S., Lim, T.T.: Modeling and analysis of insect-like flexible wings at low Reynolds number. J. Fluids Struct. 62, 294–317 (2016)

    Article  Google Scholar 

  7. Ang, S.J., Yeo, K.S., Chew, C.S., Shu, C.: A singular-value decomposition (SVD)-based generalized finite difference (GFD) method for close-interaction moving boundary flow problems. Int. J. Numer. Methods Eng. 76(12), 1892–1929 (2008)

    Article  MathSciNet  Google Scholar 

  8. Barbič, J., Sin, F.S., Schroeder, D.: Vega FEM Library. http://www.jernejbarbic.com/vega (2012)

  9. Sin, F.S., Schroeder, D., Barbič, J.: Vega: non-linear FEM deformable object simulator. In: Computer Graphics Forum. Wiley Online Library (2012)

    Google Scholar 

  10. Wood, W.L.: Practical Time-Stepping Schemes. Oxford Applied Mathematics and Computing Science Series. Clarendon Press, Oxford (1990)

    Google Scholar 

  11. Lua, K.B., Lai, K.C., Lim, T.T., Yeo, K.S.: On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp. Fluids 49(6), 1263–1291 (2010)

    Article  Google Scholar 

  12. Liu, H.: Integrated modelling of insect flight: from morphology, kinematics to aerodynamics. J. Comput. Phys. 228(2), 439–459 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dudley, R.: The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, Princeton, USA (2000)

    Google Scholar 

  14. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 208, 2303–2318 (2005)

    Article  Google Scholar 

  15. Holtzman S., Kaufman T.: Large-scale imaging of Drosophila melanogaster mutations. http://flybase.org/reports/FBrf0220532.html (2013)

  16. Jardin, T., Farcy, A., David, L.: Three-dimensional effects in hovering flapping flight. J. Fluid Mech. 702, 102–125 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, Y., Yeo, K.S., Nguyen, T.T. (2019). A Numerical Study on Free Hovering Fruit-Fly with Flexible Wings. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics