Skip to main content

Selection Criterion of Stable Mode of Dendritic Growth with n-Fold Symmetry at Arbitrary Péclet Numbers with a Forced Convection

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

Abstract

A stable mode of anisotropic dendrite growing in a forced convective flow with n-fold crystalline symmetry is studied for low, moderate and rapid tip velocities (for arbitrary Péclet numbers). A generalized selection criterion determining a stable combination for the dendrite tip velocity and dendrite tip diameter is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trivedi, R., Kurz, W.: Dendritic growth. Int. Mater. Rev. 39, 49–74 (1994). https://doi.org/10.1179/imr.1994.39.2.49

    Article  Google Scholar 

  2. Kurz, W.: Fundamentals of Solidification. Trans Tech Publications, Aedermannsdorf (1989)

    Google Scholar 

  3. Galenko, P.K., Zhuravlev, V.A.: Physics of Dendrites. World Scientific, Singapore (1994)

    Google Scholar 

  4. Galenko, P.K., Alexandrov, D.V.: From atomistic interfaces to dendritic patterns. Phil. Trans. R. Soc. A 376, 20170210 (2018). https://doi.org/10.1098/rsta.2017.0210

    Article  Google Scholar 

  5. Brener, E.A., Mel’nikov, V.I.: Pattern selection in two-dimensional dendritic growth. Adv. Phys. 40, 53–97 (1991). https://doi.org/10.1080/00018739100101472

    Article  MathSciNet  Google Scholar 

  6. Almgren, R., Dai, W.-S., Hakim, V.: Scaling behavior in anisotropic Hele-Shaw flow. Phys. Rev. Lett. 71, 3461–3464 (1993). https://doi.org/10.1103/PhysRevLett.71.3461

    Article  Google Scholar 

  7. Brener, E.A.: Needle-crystal solution in three-dimensional dendritic growth. Phys. Rev. Lett. 71, 3653–3656 (1993). https://doi.org/10.1103/PhysRevLett.71.3653

    Article  Google Scholar 

  8. Brener, E.A.: Pattern formation in three-dimensional dendritic growth. Phys. A 263, 338–344 (1999). https://doi.org/10.1016/S0378-4371(98)00488-9

    Article  Google Scholar 

  9. Alexandrov, D.V., Galenko, P.K.: Boundary integral approach for propagating interfaces in a binary non-isothermal mixture. Phys. A 469, 420–428 (2017). https://doi.org/10.1016/j.physa.2016.11.062

    Article  MathSciNet  MATH  Google Scholar 

  10. Alexandrov, D.V., Galenko, P.K., Titova, E.A.: The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems. Phil. Trans. R. Soc. A 376, 20170218 (2018). https://doi.org/10.1098/rsta.2017.0218

    Article  MathSciNet  MATH  Google Scholar 

  11. Langer, J.S., Hong, D.C.: Solvability conditions for dendritic growth in the boundary-layer model with capillary anisotropy. Phys. Rev. A 34, 1462–1471 (1986). https://doi.org/10.1103/PhysRevA.34.1462

    Article  Google Scholar 

  12. Pelcé, P., Bensimon, D.: Theory of dendrite dynamics. Nucl. Phys. B 2, 259–270 (1987). https://doi.org/10.1016/0920-5632(87)90022-3

    Article  Google Scholar 

  13. Alexandrov, D.V., Galenko, P.K.: Dendrite growth under forced convection: analysis methods and experimental tests. Phys.-Usp. 57, 771–786 (2014). https://doi.org/10.3367/UFNe.0184.201408b.0833

    Article  Google Scholar 

  14. Kessler, D.A., Koplik, J., Levine, H.: Pattern selection in fingered growth phenomena. Adv. Phys. 37, 255–339 (1988). https://doi.org/10.1080/00018738800101379

    Article  Google Scholar 

  15. Ben Amar, M.: Theory of needle-crystal. Phys. D 31, 409–423 (1988). https://doi.org/10.1016/0167-2789(88)90006-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Ben Amar, M., Pelcé, P.: Impurity effect on dendritic growth. Phys. Rev. A 39, 4263–4269 (1989). https://doi.org/10.1103/PhysRevA.39.4263

    Article  Google Scholar 

  17. Bouissou, Ph, Pelcé, P.: Effect of a forced flow on dendritic growth. Phys. Rev. A 40, 6673–6680 (1989). https://doi.org/10.1103/PhysRevA.40.6673

    Article  Google Scholar 

  18. Brener, E.A.: Effects of surface energy and kinetics on the growth of needle-like dendrites. J. Cryst. Growth 99, 165–170 (1990). https://doi.org/10.1016/0022-0248(90)90505-F

    Article  Google Scholar 

  19. Müller-Krumbhaar, H., Abel, T., Brener, E., Hartmann, M., Eissfeldt, N., Temkin, D.: Growth-morphologies in solidification and hydrodynamics. JSME Int. J. Ser. B 45, 129–132 (2002). https://doi.org/10.1299/jsmeb.45.129

  20. Alexandrov, D.V., Galenko, P.K., Herlach, D.M.: Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow. J. Cryst. Growth 312, 2122–2127 (2010). https://doi.org/10.1016/j.jcrysgro.2010.03.036

    Article  Google Scholar 

  21. Alexandrov, D.V., Galenko, P.K.: Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection. Phys. Rev. E 87, 062403 (2013). https://doi.org/10.1103/PhysRevE.87.062403

    Article  Google Scholar 

  22. Alexandrov, D.V., Galenko, P.K.: Thermo-solutal and kinetic regimes of an anisotropic dendrite groving under forced convective flow. Phys. Chem. Chem. Phys. 17, 19149–19161 (2015). https://doi.org/10.1039/c5cp03018h

  23. Alexandrov, D.V., Galenko, P.K.: Selection criterion for the growing dendritic tip at the inner core boundary. J. Phys. A: Math. Theor. 46, 195101 (2013). https://doi.org/10.1088/1751-8113/46/19/195101

    Article  MathSciNet  MATH  Google Scholar 

  24. Alexandrov, D.V., Galenko, P.K.: Dendritic growth with the six-fold symmetry: theoretical predictions and experimental verification. J. Phys. Chem. Solids 108, 98–103 (2017). https://doi.org/10.1016/j.jpcs.2017.04.016

    Article  Google Scholar 

  25. Alexandrov, D.V., Galenko, P.K.: Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry. J. Phys.: Condens. Matter 30, 105702 (2018). https://doi.org/10.1088/1361-648X/aaab7b

  26. Alexandrov, D.V., Galenko, P.K., Toropova, L.V.: Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection. Phil. Trans. R. Soc. A 376, 20170215 (2018). https://doi.org/10.1098/rsta.2017.0215

    Article  MathSciNet  MATH  Google Scholar 

  27. Karma, A., Kotliar, B.G.: Pattern selection in a boundary-layer model of dendritic growth in the presence of impurities. Phys. Rev. A 31, 3266–3275 (1985). https://doi.org/10.1103/PhysRevA.31.3266

    Article  Google Scholar 

  28. Vainstein, B.K.: Modern Crystallography, vol. 1. Fundamentals of Crystals, Symmetry, and Methods of Structural Crystallography. Springer, Berlin (1982)

    Google Scholar 

  29. Ye, H.Q., Wang, D.N., Kuo, K.H.: Fivefold symmetry in real and reciprocal spaces. Ultramicroscopy 16, 273–277 (1985). https://doi.org/10.1016/0304-3991(85)90083-X

    Article  Google Scholar 

  30. Zou, X.D., Fung, K.K., Kuo, K.H.: Orientation relationship of decagonal quasicrystal and tenfold twins in rapidly cooled Al-Fe alloy. Phys. Rev. B 35, 4526–4528 (1987). https://doi.org/10.1103/PhysRevB.35.4526

    Article  Google Scholar 

  31. Hornfeck, W., Kobold, R., Kolbe, M., Herlach, D.: Quasicrystal nucleation in an intermetallic glass-former (2014). arXiv:1410.2952

  32. Dash, S.K., Gill, W.N.: Forced convection heat and momentum transfer to dendritic structures (parabolic cylinders and paraboloids of revolution). Int. J. Heat Mass Trans. 27, 1345–1356 (1984). https://doi.org/10.1016/0017-9310(84)90062-0

    Article  MATH  Google Scholar 

  33. Pelcé, P.: Dynamics of Curved Fronts. Academic Press, Boston (1988)

    MATH  Google Scholar 

  34. Ivantsov, G.P.: Temperature field around spherical, cylinder and needle-like dendrite growing in supercooled melt. Dokl. Akad. Nauk SSSR 58, 567–569 (1947)

    Google Scholar 

  35. Ivantsov, G.P.: On a growth of spherical and needle-like crystals of a binary alloy. Dokl. Akad. Nauk SSSR 83, 573–575 (1952)

    Google Scholar 

  36. Bouissou, P., Perrin, B., Tabeling, P.: Influence of an external flow on dendritic crystal growth. Phys. Rev. A 40, 509–512 (1989). https://doi.org/10.1103/PhysRevA.40.509

    Article  Google Scholar 

  37. Tong, X., Beckermann, C., Karma, A., Lee, Q.: Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 63, 061601 (2001). https://doi.org/10.1103/PhysRevE.63.061601

    Article  Google Scholar 

  38. Jeong, J.-H., Goldenfeld, N., Dantzig, J.A.: Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 64, 041602 (2001). https://doi.org/10.1103/PhysRevE.64.041602

    Article  Google Scholar 

  39. Gao, J., Han, M., Kao, A., Pericleous, K., Alexandrov, D.V., Galenko, P.K.: Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: a test of theory with convection. Acta Mater. 103, 184–191 (2016). https://doi.org/10.1016/j.actamat.2015.10.014

    Article  Google Scholar 

  40. Gao, J., Kao, A., Bojarevics, V., Pericleous, K., Galenko, P.K., Alexandrov, D.V.: Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts. J. Cryst. Growth 471, 66–72 (2017). https://doi.org/10.1016/j.jcrysgro.2016.11.069

    Article  Google Scholar 

  41. Brener, E.A., Mel’nikov, V.I.: Two-dimensional dendritic growth at arbitrary Peclet number. J. Phys. Fr. 51, 157–166 (1990). https://doi.org/10.1051/jphys:01990005102015700

    Article  Google Scholar 

  42. Bragard, J., Karma, A., Lee, Y.H., Plapp, M.: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts. Interface Sci. 10, 121–136 (2002). https://doi.org/10.1023/A:101581592

    Article  Google Scholar 

  43. Nestler, B., Danilov, D., Galenko, P.: Crystal growth of pure substances: phase-field simulations in comparison with analytical and experimental results. J. Comput. Phys. 207, 221–239 (2005). https://doi.org/10.1016/j.jcp.2005.01.018

    Article  MathSciNet  MATH  Google Scholar 

  44. Alexandrov, D.V., Galenko, P.K.: Selected mode of dendritic growth with \(n\)-fold symmetry in the presence of a forced flow. EPL 119, 16001 (2017). https://doi.org/10.1209/0295-5075/119/16001

  45. Galenko, P.K., Danilov, D.A.: Local nonequilibrium effect on rapid dendritic growth in a binary alloy melt. Phys. Lett. A 235, 271–280 (1997). https://doi.org/10.1016/S0375-9601(97)00562-8

    Article  Google Scholar 

  46. Galenko, P.K., Danilov, D.A.: Selection of the dynamically stable regime of rapid solidification front motion in an isothermal binary alloy. J. Cryst. Growth 216, 512–526 (2000). https://doi.org/10.1016/S0022-0248(00)00338-9

    Article  Google Scholar 

  47. Alexandrov, D.V., Galenko, P.K.: Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport. Acta Mater. 137, 64–70 (2017). https://doi.org/10.1016/j.actamat.2017.07.022

    Article  Google Scholar 

  48. Eckler, K., Cochrane, R.F., Herlach, D.M., Feuerbacher, B., Jurisch, M.: Evidence for a transition from diffusion-controlled to thermally controlled solidification in metallic alloys. Phys. Rev. B 45, 5019–5022 (1992). https://doi.org/10.1103/PhysRevB.45.5019

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Russian Science Foundation (grant 16-11-10095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alexandrov, D.V., Galenko, P.K. (2019). Selection Criterion of Stable Mode of Dendritic Growth with n-Fold Symmetry at Arbitrary Péclet Numbers with a Forced Convection. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics