Skip to main content

A Geometry-Adaptive Immersed Boundary–Lattice Boltzmann Method for Modelling Fluid–Structure Interaction Problems

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

Abstract

The immersed boundary method has been extensively used in many areas. However, there are two typical challenges for modelling fluid-structure problems at moderate and high Reynolds numbers (e.g. \(10^3\)\(10^5\)). One is the size of mesh at high Reynolds numbers when the standard immersed boundary method is applied. The other is the numerical instability associated with the partitioned coupling for fluid-structure interaction problems involving small structure-to-fluid mass ratios. To address the challenges, a novel computational framework which combines the lattice Boltzmann method and an improved immersed boundary method based on a dynamic geometry-adaptive Cartesian grid is presented. A few classic validations are conducted to demonstrate the accuracy of the current method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, L., Peskin, C.S.: Simulation of a flapping flexible filament in a flowing soap film by the immersed boundary method. J. Comput. Phys. 179, 452–468 (2002)

    Article  MathSciNet  Google Scholar 

  2. Tian, F.B., Luo, H., Zhu, L., Lu, X.Y.: Interaction between a flexible filament and a downstream rigid body. Phys. Rev. E 82, 026,301 (2010)

    Article  Google Scholar 

  3. Tian, F.B., Luo, H., Zhu, L., Liao, J.C., Lu, X.Y.: An immersed boundary-lattice Boltzmann method for elastic boundaries with mass. J. Comput. Phys. 230, 7266–7283 (2011)

    Article  MathSciNet  Google Scholar 

  4. Tian, F.B., Lu, X.Y., Luo, H.: Onset of instability of a flag in uniform flow. Theor. Appl. Mech. Lett. 2, 022,005 (2012)

    Article  Google Scholar 

  5. Tian, F.B., Luo, H., Song, J., Lu, X.Y.: Force production and asymmetric deformation of a flexible flapping wing in forward flight. J. Fluids Struct. 36, 149–161 (2013)

    Article  Google Scholar 

  6. Tian, F.B.: Role of mass on the stability of flag/flags in uniform flow. Appl. Phys. Lett. 103, 034,101 (2013)

    Article  Google Scholar 

  7. Stewart, W.J., Tian, F.B., Akanyeti, O., Walker, C., Liao, J.C.: Refusing rainbow trout selectively exploit flows behind tandem cylinders. J. Exp. Biol. 219, 2182–2191 (2016)

    Article  Google Scholar 

  8. Shahzad, A., Tian, F.B., Young, J., Lai, J.C.S.: Effects of flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios in hover. J. Fluids Struct. 81, 69–96 (2018)

    Article  Google Scholar 

  9. Tezduyar, T.E., Sathe, S., Keedy, R., Stein, K.: Space-time finite element techniques for computation of fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 195, 2002–2027 (2006)

    Article  MathSciNet  Google Scholar 

  10. Tian, F.B., Luo, H., Zhu, L., Lu, X.Y.: Coupling modes of three filaments in side-by-side arrangement. Phys. Fluids 23, 111,903 (2011)

    Article  Google Scholar 

  11. Akcabay, D.T., Young, Y.L.: Scaling the dynamic response and energy harvesting potential of piezoelectric beams. Appl. Phys. Lett. 101, 264,104 (2012)

    Article  Google Scholar 

  12. Tian, F.B., Young, J., Lai, J.C.S.: Improving power-extraction efficiency of a flapping plate: From passive deformation to active control. J. Fluids Struct. 51, 384–392 (2014)

    Article  Google Scholar 

  13. Wu, J., Shu, C., Zhao, N., Tian, F.B.: Numerical study on the power extraction performance of a flapping foil with a flexible tail. Phys. Fluids 27, 013,602 (2015)

    Article  Google Scholar 

  14. Wu, J., Wu, J., Tian, F.B., Zhao, N., Li, Y.D.: How a flexible tail improve the power extraction efficiency of a semi-activated flapping foil system: a numerical study. J. Fluids Struct. 54, 886–899 (2015)

    Article  Google Scholar 

  15. Deng, H.B., Xu, Y.Q., Chen, D.D., Dai, H., Wu, J., Tian, F.B.: On numerical modeling of animal swimming and flight. Comput. Mech. 52, 1221–1242 (2013)

    Article  MathSciNet  Google Scholar 

  16. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Long, C.C., Marsden, A.L., Schjodt, K.: ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math. Model. Methods Appl. Sci. 24, 2437–2486 (2014)

    Article  MathSciNet  Google Scholar 

  17. Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space-time methods. Arch. Comput. Methods Eng. 21, 481–508 (2014)

    Article  MathSciNet  Google Scholar 

  18. Liska, S., Colonius, T.: A fast immersed boundary method for external incompressible viscous flows using lattice Green’s functions. J. Comput. Phys. 331, 257–279 (2017)

    Article  MathSciNet  Google Scholar 

  19. Tian, F.B., Lu, X.Y., Luo, H.: Propulsive performance of a body with a traveling wave surface. Phys. Rev. E 86, 016,304 (2012)

    Article  Google Scholar 

  20. Tian, F.B., Bharti, R.P., Xu, Y.Q.: Deforming-spatial-domain/stabilized space-time (DSD/SST) method in computation of non-Newtonian fluid flow and heat transfer with moving boundaries. Comput. Mech. 53, 257–271 (2014)

    Article  MathSciNet  Google Scholar 

  21. Tian, F.B., Xu, Y.Q., Tang, X.Y., Deng, Y.L.: Study on a self-propelled fish swimming in viscous fluid by a finite element method. J. Mech. Med. Biol. 13, 1340,012 (2013)

    Article  Google Scholar 

  22. Tian, F.B.: FSI modeling with the DSD/SST method for the fluid and finite difference method for the structure. Comput. Mech. 54, 581–589 (2014)

    Article  MathSciNet  Google Scholar 

  23. Tian, F.B.: A numerical study of linear and nonlinear kinematic models in fish swimming with the DSD/SST method. Comput. Mech. 55, 469–477 (2015)

    Article  MathSciNet  Google Scholar 

  24. Tian, F.B., Wang, Y., Young, J., Lai, J.C.S.: An FSI solution technique based on the DSD/SST method and its applications. Math. Model. Methods Appl. Sci. 25, 2257–2285 (2015)

    Google Scholar 

  25. Xu, Y.Q., Jiang, Y.Q., Wu, J., Sui, Y., Tian, F.B.: Benchmark numerical solutions for two-dimensional fluid-structure interaction involving large displacements with the deforming-spatial-domain/stabilized space-time and immersed boundary-lattice Boltzmann methods. Inst. Mech. Eng. C: J. Mech. Eng. Sci. 232, 2500–2514 (2018)

    Google Scholar 

  26. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10, 252–271 (1972)

    Article  Google Scholar 

  27. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

    Article  MathSciNet  Google Scholar 

  28. Griffith, B.E., Hornung, R.D., McQueen, D.M., Peskin, C.S.: An adaptive, formally second order accurate version of the immersed boundary method. J. Comput. Phys. 223, 10–49 (2007)

    Article  MathSciNet  Google Scholar 

  29. Ghias, R., Mittal, R., Dong, H.: A sharp interface immersed boundary method for compressible viscous flows. J. Comput. Phys. 225, 528–553 (2007)

    Article  MathSciNet  Google Scholar 

  30. Wang, W., Yan, Y., Tian, F.B.: A simple and efficient implicit direct forcing immersed boundary framework for simulations of complex flow. Appl. Math. Model. 43, 287–305 (2017)

    Article  MathSciNet  Google Scholar 

  31. Wang, L., Currao, G.M.D., Han, F., Neely, A.J., Young, J., Tian, F.B.: An immersed boundary method for fluid-structure interaction with compressible multiphase flows. J. Comput. Phys. 346, 131–151 (2017)

    Article  MathSciNet  Google Scholar 

  32. Mittal, R., Iaccarino, G.: Immersed boundary method. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MathSciNet  Google Scholar 

  33. Xu, Y.Q., Tian, F.B., Li, H.J., Deng, Y.L.: Red blood cell partitioning and blood flux redistribution in microvascular bifurcation. Theor. Appl. Mech. Lett. 2, 024,001 (2012)

    Article  Google Scholar 

  34. Xu, Y.Q., Tian, F.B., Deng, Y.L.: An efficient red blood cell model in the frame of IB-LBM and its application. Int. J. Biomath. 6, 1250,061 (2013)

    Article  MathSciNet  Google Scholar 

  35. Xu, Y.Q., Tang, X.Y., Tian, F.B., Peng, Y.H., Xu, Y., Zeng, Y.J.: IB-LBM simulation of the haemocyte dynamics in a stenotic capillary. Comput. Methods Biomech. Biomed. Eng. 17, 978–985 (2014)

    Article  Google Scholar 

  36. Tian, F.B., Dai, H., Luo, H., Doyle, J.F., Rousseau, B.: Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451–469 (2014)

    Article  MathSciNet  Google Scholar 

  37. Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluidcstructure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)

    Article  Google Scholar 

  38. Xu, L., Tian, F.B., Young, J., Lai, J.C.S.: A novel geometry-adaptive cartesian grid based immersed boundary-lattice Boltzmann method for fluid-structure interactions at moderate and high reynolds numbers. J. Comput. Phys. 375, 22–56 (2018)

    Google Scholar 

  39. Wang, L., Tian, F.B.: Heat transfer in non-newtonian flows by a hybrid immersed boundary-lattice Boltzmann and finite difference method. Appl. Sci. 8, 559 (2018)

    Google Scholar 

  40. d’Humières, D.: Generalized lattice Boltzmann equation. AIAA Rarefied Gas Dyn. Theory Simul. 159, 450–458 (1992)

    Google Scholar 

  41. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Mechods Appl. Mech. Eng. 118, 179–196 (1994)

    Article  MathSciNet  Google Scholar 

  42. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  43. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  Google Scholar 

  44. Ren, W., Shu, C., Wu, J., Yang, W.: Boundary condition-enforced immersed boundary method for thermal flow problems with dirichlet temperature condition and its applications. Comput. Fluids 57, 40–51 (2012)

    Article  MathSciNet  Google Scholar 

  45. Bharti, R., Sivakumar, P., Chhabra, R.: Forced convection heat transfer from an elliptical cylinder to power-law fluids. Int. J. Heat Mass Transf. 51, 1838–1853 (2008)

    Article  Google Scholar 

  46. Patnana, V.K., Bharti, R.P., Chhabra, R.P.: Two-dimensional unsteady flow of power-law fluids over a cylinder. Chem. Eng. Sci. 64, 2978–2999 (2009)

    Article  Google Scholar 

  47. Tian, F.B., Zhu, L., Fok, P.W., Lu, X.Y.: Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis. Comput. Biol. Med. 43, 1098–1113 (2013)

    Article  Google Scholar 

  48. Tian, F.B.: Deformation of a capsule in a power-law shear flow. Comput. Math. Methods Med. 2016, 7981,386 (2016)

    Google Scholar 

  49. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  50. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids Fluid Dyn. 4, 633–635 (1992)

    Article  Google Scholar 

  51. Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics 319, 353–385 (1996)

    Article  Google Scholar 

  52. Sui, Y., Chew, Y.T., Roy, P., Low, H.T.: A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions. Int. J. Numer. Meth. Fluids 53, 1727–1754 (2007)

    Article  MathSciNet  Google Scholar 

  53. Alben, S.: Wake-mediated synchronization and drafting in coupled flags. J. Fluid Mech. 641, 489–496 (2009)

    Article  MathSciNet  Google Scholar 

  54. Norberg, R.: Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. Swimming and Flying in Nature, pp. 763–781. Springer, Berlin (1975)

    Chapter  Google Scholar 

  55. Hu, Z., Deng, X.Y.: Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mech. Sin. 30(6), 787–799 (2014)

    Article  Google Scholar 

  56. Hudson, J.D., Dykhno, L., Hanratty, T.J.: Turbulence production in flow over a wavy wall. Exp. Fluids 20, 257–265 (1996)

    Article  Google Scholar 

  57. Calhoun, R.J., Street, R.L.: Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. Ocean. 106, 9277–9293 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

Mr L. Xu acknowledges the support of the University International Postgraduate Award by University of New South Wales. Dr. F.-B. Tian is the recipient of an Australian Research Council Discovery Early Career Researcher Award (project number DE160101098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Bao Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, L., Wang, L., Tian, FB., Young, J., Lai, J.C.S. (2019). A Geometry-Adaptive Immersed Boundary–Lattice Boltzmann Method for Modelling Fluid–Structure Interaction Problems. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics