Skip to main content

Sparse Feature Extraction Model with Independent Subspace Analysis

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11331))

  • 2053 Accesses

Abstract

Recent advances in deep learning models have demonstrated remarkable accuracy in object classification. However, the limitations of Convolutional Neural Networks such as the requirement for a large collection of labeled data for training and supervised learning process has called for enhanced feature representation and for unsupervised models.

In this paper we propose a novel unsupervised sparsity-based model using Independent Subspace Analysis (ISA) to implement a hierarchical network for feature extraction. The results of our empirical evaluation demonstrates an improved classification accuracy when max pooling is paired with square pooling within each layer. In addition to accuracy, we further show that it also reduces the data dimensions within the layers outperforming known sparsity-based models.

R. Nath—Research performed whilst the author was at the University of Reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tested on a database of 10 different categories included: airplane, bonsai, butterfly, car-side, chandelier, faces, ketch, leopards, motorbikes, watch of objects from the CalTech101 dataset [1].

References

  1. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories, vol. 106. https://doi.org/10.1016/j.cviu.2005.09.012

    Article  Google Scholar 

  2. Baddeley, R., et al.: Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. Biol. Sci. 264(1389), 1775–1783 (1997). http://www.jstor.org/stable/51114

    Article  Google Scholar 

  3. Hu, X., Zhang, J., Li, J., Zhang, B.: Sparsity-regularized HMAX for visual recognition. PLoS One 9(1), e81813 (2014). http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081813

    Article  Google Scholar 

  4. Hyvärinen, A., Hoyer, P.: Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Comput. 12(7), 1705–1720 (2000)

    Article  Google Scholar 

  5. Hyvärinen, A., Hoyer, P.O., Inki, M.: Topographic independent component analysis. Neural Comput. 13(7), 1527–1558 (2001). https://doi.org/10.1162/089976601750264992

    Article  MATH  Google Scholar 

  6. Hyvärinen, A., Hurri, J., Hoyer, P.O.: Natural Image Statistics: A Probabilistic Approach to Early Computational Vision. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84882-491-1. Google-Books-ID: pq\_Fr1eYr7cC

    Book  MATH  Google Scholar 

  7. Hyvärinen, A., Köster, U.: Complex cell pooling and the statistics of natural images. Netw. Comput. Neural Syst. 18(2), 81–100 (2007). https://doi.org/10.1080/09548980701418942

    Article  MathSciNet  Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  10. Le, Q.V., Zou, W.Y., Yeung, S.Y., Ng, A.Y.: Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, pp. 3361–3368. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/CVPR.2011.5995496

  11. Le, Q., et al.: Building high-level features using large scale unsupervised learning (2012). http://research.google.com/pubs/pub38115.html

  12. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, pp. 609–616. ACM, New York (2009). https://doi.org/10.1145/1553374.1553453

  13. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vis. 80(1), 45–57 (2008). http://link.springer.com/article/10.1007/s11263-007-0118-0

    Article  Google Scholar 

  14. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strategy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  15. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999). https://doi.org/10.1038/14819. PMID: 10526343

    Article  Google Scholar 

  16. Rolls, E.T.: Invariant visual object and face recognition: neural and computational bases, and a model, VisNet. Front. Comput. Neurosci. 6, 35 (2012). https://doi.org/10.3389/fncom.2012.00035, PMID: 22723777

  17. Rolls, E.T., Treves, A.: The neuronal encoding of information in the brain. Prog. Neurobiol. 95(3), 448–490 (2011). http://www.sciencedirect.com/science/article/pii/S030100821100147X

    Article  Google Scholar 

  18. Serre, T., Wolf, L., Poggio, T.: Object recognition with features inspired by visual cortex. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 994–1000 (2005). https://doi.org/10.1109/CVPR.2005.254

  19. Serre, T.: Hierarchical models of the visual system. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–12. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7320-6_345-1

    Chapter  Google Scholar 

  20. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Nat. Acad. Sci. 104(15), 6424–6429 (2007). http://www.pnas.org/content/104/15/6424

    Article  Google Scholar 

  21. Serre, T., Riesenhuber, M.: Realistic modeling of simple and complex cell tuning in the HMAX model, and implications for invariant object recognition in cortex (2004)

    Google Scholar 

  22. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust object recognition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 411–426 (2007). https://doi.org/10.1109/TPAMI.2007.56

    Article  Google Scholar 

  23. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

    MathSciNet  MATH  Google Scholar 

  24. Theriault, C., Thome, N., Cord, M.: HMAX-S: deep scale representation for biologically inspired image categorization. In: 2011 18th IEEE International Conference on Image Processing, pp. 1261–1264 (2011). https://doi.org/10.1109/ICIP.2011.6115663

  25. Theriault, C., Thome, N., Cord, M.: Extended coding and pooling in the HMAX model. IEEE Trans. Image Process. 22(2), 764–777 (2013). https://doi.org/10.1109/TIP.2012.2222900

    Article  MathSciNet  MATH  Google Scholar 

  26. Xu, Y., Xiao, T., Zhang, J., Yang, K., Zhang, Z.: Scale-invariant convolutional neural networks. http://arxiv.org/abs/1411.6369

  27. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level via hierarchical sparse coding. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1713–1720, June 2011. https://doi.org/10.1109/CVPR.2011.5995732

  28. Zeiler, M.D., Taylor, G.W., Fergus, R.: Adaptive deconvolutional networks for mid and high level feature learning. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 2018–2025. IEEE Computer Society, Washington, DC (2011). https://doi.org/10.1109/ICCV.2011.6126474

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manjunathaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nath, R., Manjunathaiah, M. (2019). Sparse Feature Extraction Model with Independent Subspace Analysis. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2018. Lecture Notes in Computer Science(), vol 11331. Springer, Cham. https://doi.org/10.1007/978-3-030-13709-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13709-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13708-3

  • Online ISBN: 978-3-030-13709-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics