Skip to main content

Intermittent Contact Mode/Tapping Mode

  • Chapter
  • First Online:
Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 4527 Accesses

Abstract

Here we introduce the intermittent contact mode (or tapping mode) which is the mode that is used most frequently at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The phase \(\phi (A/A_\mathrm {free})\) can be obtained numerically from (2.32) and (2.35). If this result is plotted in Fig. 14.3 it is indistinguishable on top of the curve obtained from (14.5). Alternatively (2.32) and (2.35) can be rearranged analytically leading to (14.5) in a very good approximation.

  2. 2.

    If we approximate the tip-sample force by \(F_\mathrm {ts} = - k' z\) (harmonic oscillator), \(\left\langle F_\mathrm {ts} \cdot z \right\rangle = - 1/2\,k' A^2\) results (cf. (16.10)). Inserting this into (14.13) and remembering that according to (14.5) \(A/A_\mathrm {free} = - \sin {\phi }\), the following expression for the phase is obtained \(\tan {\phi } = k/(k' Q_\mathrm {cant})\), which corresponds to expression (13.20) obtained for the harmonic oscillator.

  3. 3.

    Correspondingly, the left “ear” also occurs on the high-frequency side of the resonance curve.

  4. 4.

    Here we used the dependence \(\phi (A/A_\mathrm {free})\) while in an experiment the \(\phi (d)\) is obtained. However, the two dependences can be converted into each other using the (measured) A(d) dependence.

  5. 5.

    There are also other reasons for the switch between different oscillation sates. For instance, the presence of a valley in the surface topography can enhance the attractive forces (larger regions of the tip will feel the attractive interaction) and thus change the force-distance behavior locally, resulting in a switch to the other branch of the oscillation state.

  6. 6.

    Since \(0>\phi > -180^{\circ }\), \(\left\langle P_\mathrm {drive} \right\rangle \) is positive.

  7. 7.

    While we used here the principle of energy conservation to derive (14.19), this equation can be obtained alternatively by multiplying (14.10) with \(\omega _0 A \sin (\omega _0 t + \phi )\) and integrating over one period, as will be shown in Sect. 14.5.

  8. 8.

    \(\left\langle F_\mathrm {ts} \cdot \dot{z}(t)\right\rangle \) is negative, as power is dissipated from the system to the environment.

  9. 9.

    The even/odd force contributions with respect to the time \(\Delta t > 0\) relative to the time of the lower turnaround point \(t_0+T/2\) are \(F_\mathrm {ts}^\mathrm {even/odd}(d+z(t_0+T/2-\Delta t)) =1/2 \left( F_\mathrm {ts}(d+z(t_0+T/2-\Delta t)) \pm F_\mathrm {ts}(d+z(t_0+T/2+\Delta t)) \right) = 1/2 \left( F_\mathrm {ts}^\mathrm {approach}(d+z) \pm F_\mathrm {ts}^\mathrm {retract}(d+z) \right) \). If \(\Delta t \rightarrow - \Delta t\), \(F_\mathrm {ts}^\mathrm {even} \rightarrow F_\mathrm {ts}^\mathrm {even}\), while \(F_\mathrm {ts}^\mathrm {odd} \rightarrow - F_\mathrm {ts}^\mathrm {odd}\).

References

  1. J.P. Cleveland, B. Anczykowski, A.E. Schmid, V.B. Elings, Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 72, 2613 (1998). https://doi.org/10.1063/1.121434

    Article  ADS  Google Scholar 

  2. M.V. Salapaka, D.J. Chen, J.P. Cleveland, Linearity of amplitude and phase in tapping-mode atomic force microscopy. Phys. Rev. B 61, 1106 (2000). https://doi.org/10.1103/PhysRevB.61.1106

    Article  ADS  Google Scholar 

  3. A.I. Livshits, A.L. Shluger, A.L. Rohl, Contrast mechanism in non-contact SFM imaging of ionic surfaces. Appl. Surf. Sci. 140, 327 (1999). https://doi.org/10.1016/S0169-4332(98)00549-2

    Article  ADS  Google Scholar 

  4. U. Dürig, Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Appl. Phys. Lett. 75, 433 (1999). https://doi.org/10.1063/1.124399

    Article  ADS  Google Scholar 

  5. L.D. Landau, E.M. Lifshitz, Mechanics, vol. 1, (Butterworth-Heinemann, Oxford 1976) ISBN 978-0-7506-2896-9

    Google Scholar 

  6. H. Hölscher, U.D. Schwarz, Theory of amplitude modulation atomic force microscopy with and without Q-Control. Non-linear Mech. 42, 608 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.01.018

    Article  Google Scholar 

  7. L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436 (2002). https://doi.org/10.1103/PhysRevB.66.155436

    Article  ADS  Google Scholar 

  8. J.R. Lozano, R. Garcia, Theory of phase spectroscopy in bimodal atomic force microscopy. Phys. Rev. B 79, 014110 (2009). https://doi.org/10.1103/PhysRevB.79.014110

    Article  ADS  Google Scholar 

  9. J.E. Sader, T. Uchihashi, M.J. Higgins, A. Farrell, Y. Nakayama, S.P. Jarvis, Quantitative force measurements using frequency modulation atomic force microscopy-theoretical foundations. Nanotechnology 16, S94 (2005). https://doi.org/10.1088/0957-4484/16/3/018

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Voigtländer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voigtländer, B. (2019). Intermittent Contact Mode/Tapping Mode. In: Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-13654-3_14

Download citation

Publish with us

Policies and ethics