Skip to main content

Forces Between Tip and Sample

  • Chapter
  • First Online:
Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The idea behind the atomic force microscope (AFM) is to measure the force between the surface and the scanning tip in order to track the surface topography. Before we describe the atomic force microscopy technique in detail, we consider the forces acting between tip and sample as well as the tip-sample contact mechanics. We consider also the snap-to-contact phenomenon, which can occur due to attractive tip-sample forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use here the coordinate z for the distance between the tip and sample instead of r previously used for the Lennard-Jones potential between two atoms in (10.5).

  2. 2.

    In our analysis we treat the spring constant k and the parameters of the Lennard-Jones potential (\(U_0\) and \(z_a\)) as constants.

References

  1. J. Cugnon, The Casimir effect and the vacuum energy: duality in the physical interpretation. Few-Body Syst. 53, 181 (2012). https://doi.org/10.1007/s00601-011-0250-9

    Article  ADS  Google Scholar 

  2. J. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, London, 2011). ISBN 9780123919274

    Google Scholar 

  3. R. Reifenberger, Fundamentals of Atomic Force Microscopy: Part I: Foundations (World Scientific, Singapore, 2015). https://doi.org/10.1142/9343

  4. H. Hertz, Über die Berührung fester elastischer Körper (On the contact of elastic solids). J. Reine Angew. Math. 92, 156 (1881)

    MATH  Google Scholar 

  5. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975). https://doi.org/10.1016/0021-9797(75)90018-1

    Article  ADS  Google Scholar 

  6. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, On the role of molecular forces in contact deformations (critical remarks concerning Dr. Tabor’s report). J. Colloid Interface Sci. 67, 378 (1978). https://doi.org/10.1016/0021-9797(78)90021-8

    Article  ADS  Google Scholar 

  7. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, On different approaches to the contact mechanics. J. Colloid Interface Sci. 73, 293 (1980). https://doi.org/10.1016/0021-9797(80)90157-5

    Article  ADS  Google Scholar 

  8. V.M. Muller, B.V. Derjaguin, Y.P. Toporov, On two methods of calculation of the force of sticking of an elastic sphere to a rigid plane. Colloids Surf. 7, 251 (1983). https://doi.org/10.1016/0166-6622(83)80051-1

    Article  Google Scholar 

  9. D. Maugis, Adhesion of spheres: the JKR-DMT transition using a dugdale model. J. Colloid Interface Sci. 150, 243 (1992). https://doi.org/10.1016/0021-9797(92)90285-T

    Article  ADS  Google Scholar 

  10. B. Derjaguin, Untersuchungen über die Reibung und Adhäsion, IV (Investigations on friction and adhesion). Kolloid Z. 69, 155 (1934). https://doi.org/10.1007/BF01433225

    Article  Google Scholar 

  11. D. Tabor, Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2 (1977). https://doi.org/10.1016/0021-9797(77)90366-6

    Article  ADS  Google Scholar 

  12. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Ser. A 324, 301 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  ADS  Google Scholar 

  13. V.M. Muller, V.S. Yuschenko, B.V. Derjaguin, On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J. Colloid Interface Sci. 77, 91 (1980). https://doi.org/10.1016/0021-9797(80)90419-1

    Article  ADS  Google Scholar 

  14. U.D. Schwarz, A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J. Colloid Interface Sci. 261, 99 (2003). https://doi.org/10.1016/S0021-9797(03)00049-3

    Article  ADS  Google Scholar 

  15. D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Sol. 8, 100 (1960). https://doi.org/10.1016/0022-5096(60)90013-2

    Article  ADS  Google Scholar 

  16. D.B. Asay, S.H. Kima, Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 124, 174712 (2006). https://doi.org/10.1063/1.2192510

    Article  ADS  Google Scholar 

  17. L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436 (2002). https://doi.org/10.1103/PhysRevB.66.155436

    Article  ADS  Google Scholar 

  18. T. Ondarcuhu, L. Fabiein, in Surface Tension in Microsystems, Microtechnology and MEMS, ed. by P. Lambert (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-37552-1_14

  19. M. Saint Jean, S. Hudlet, C. Guthmann, J. Berger, Van der Waals and capacitive forces in atomic force microscopies. J. Appl. Phys. 86, 5245 (1999). https://doi.org/10.1063/1.371506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Voigtländer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voigtländer, B. (2019). Forces Between Tip and Sample. In: Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-13654-3_10

Download citation

Publish with us

Policies and ethics