Skip to main content

Perturbing a Planar Rotation: Normal Hyperbolicity and Angular Twist

  • Chapter
  • First Online:
Geometry in History

Abstract

In generic two-parameter families of local diffeomorphisms of the plane unfolding a local diffeomorphism with an elliptic fixed point, the tension between radial (hyperbolic) and tangential (elliptic) behaviour gives rise to phenomena where the whole wealth of the area preserving case is unfolded along some direction of the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Beware that the notation F(ζ) does not mean that F is complex analytic, its expression depends on ζ and \(\overline \zeta \).

  2. 2.

    We shall not give a formal definition of this word; it means essentially that what is described is the general situation and that only special hypotheses could prevent the description from being correct.

  3. 3.

    Roughly speaking this means that any attraction or repulsion normal to the curve under the iterates of F μ dominates any attraction or repulsion inside the curve; this condition insures the robustness of the curve.

  4. 4.

    See section 1.4 of [7] for a brief introduction.

  5. 5.

    In order to avoid too cumbersome notations we still call z the transformed coordinate H 3(z).

  6. 6.

    All figures in this section are reproduced with the kind permission of Publications mathématiques de l’IHÉS.

References

  1. D.V. Anosov and A.B. Katok, New examples in smooth ergodic theory. Ergodic diffeomorphisms, Trans. Moscow Math. Soc. Vol 23 (1970)

    Google Scholar 

  2. V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Grundlehren vol. 250, 1983 Springer-Verlag

    Google Scholar 

  3. V.I. Arnold (editor) Encyclopædia of Mathematical Sciences, Dynamical Systems V: Bifurcation theory, Springer 1994

    Google Scholar 

  4. V.I. Arnold, Small denominators. I: Mappings of the circumference onto itself, AMS Translations, Ser. 2, 46 (1965), 213–284.

    Google Scholar 

  5. D.K. Arrowsmith & C.M. Place, An introduction to Dynamical Systems, Cambridge University Press 1990

    Google Scholar 

  6. C. Baesens and R. MacKay, Resonances for weak coupling of the unfolding of a saddle-node periodic orbit with an oscillator, Nonlinearity 20, 2007, 1283–1298

    Article  MathSciNet  Google Scholar 

  7. A. Chenciner, Discrete dynamical systems, Tsinghua, february–march 2017 https://www.imcce.fr/fr/presentation/equipes/ASD/person/chenciner/polys.html

  8. A. Chenciner, Poincaré and the three-body problem, in “Poincaré 1912–2012”, Birkhauser 2014 http://www.bourbaphy.fr/novembre2012.html

  9. A. Chenciner, The planar circular restricted three body problem in the lunar case, minicourse at the Chern Institute of Mathematics, Nankai University, may 2014 https://www.imcce.fr/fr/presentation/equipes/ASD/person/chenciner/polys.html

  10. A. Chenciner, Bifurcations de points fixes elliptiques I. Courbes invariantes, Publications mathématiques de l’I.H.É.S. tome 61, pp. 67–127 (1985) II. Orbites périodiques et ensembles de Cantor invariants, Inventiones mathematicæ 80, pp. 81–106 (1985) III. Orbites périodiques de “petites” périodes et élimination résonnante des couples de courbes invariantes, Publications mathématiques de l’I.H.É.S. tome 66, pp. 5–91 (1987)

    Google Scholar 

  11. A. Chenciner, Resonant Elimination of a Couple of Invariant Closed Curves in the Neighborhood of a Degenerate Hopf Bifurcation of Diffeomorphisms of \({\mathbb {R}}^2\), in Dynamical Systems, Proceedings of an IIASA Workshop on Mathematics of Dynamic Processes, Sopron 1985, Springer LN in Economics and Mathematical Systems 287

    Google Scholar 

  12. A. Chenciner, Hamiltonian-like phenomena in saddle-node bifurcations of invariant curves for plane diffeomorphisms, in Singularities and dynamical systems, S.N. Pneumaticos ed. North Holland 1985

    MATH  Google Scholar 

  13. A. Chenciner, Bifurcation de difféomorphismes de \({\mathbb {R}}^2\) au voisinage d’un point fixe elliptique, in Chaotic Behaviour of Dynamical Systems (G. Iooss, R.H.G. Helleman, R. Stora editors), Les Houches Session XXXVI (1981), North Holland 1983

    Google Scholar 

  14. A. Chenciner, La dynamique au voisinage d’un point fixe elliptique : de Poincaré et Birkhoff à Aubry et Mather, Séminaire N. Bourbaki, 1983–1984, exp. 622, 147–170

    Google Scholar 

  15. A. Chenciner, Systèmes dynamiques différentiables, Encyclopædia Universalis 1985

    Google Scholar 

  16. M. Herman, Mesure de Lebesgue et nombre de rotation, in Geometry and Topology, Lecture Notes in Mathematics 597, 271–293, Springer 1977

    Google Scholar 

  17. G. Iooss, Bifurcation of Maps and Applications, North-Holland 1979

    Google Scholar 

  18. A. Katok & B. Hasselblatt, Introduction to the Modern theory of Dynamical Systems, Cambridge University Press 1995

    Google Scholar 

  19. A. Keane and B. Krauskopf, Chenciner bubbles and torus break-up in a periodically forced delay differential equation, Nonlinearity 31, 2018, R165

    Article  MathSciNet  Google Scholar 

  20. M. Kummer, On the Stability of Hill’s Solutions of the Plane Restricted Three Body Problem, American Journal of Mathematics, Vol. 101, No. 6 (Dec., 1979), 1333–1354

    Article  MathSciNet  Google Scholar 

  21. J. Moser, Stable and random motions in dynamical systems, Princeton University Press 1973

    Google Scholar 

  22. S. Smale, Differentiable Dynamical Systems, Bull. Amer. Mat. Soc. 1967

    Google Scholar 

  23. J.C. Yoccoz, Bifurcations de points fixes elliptiques, Séminaire N. Bourbaki, 1985–1986, exp. 668, 313–334 N.B. Study of the dynamics inside resonance bubbles has been further studied in [6], while the phenomena inside the bubbles were recently applied to a model of El Niño in [19] :

    Google Scholar 

Download references

Acknowledgements

This text was written at the occasion of lectures given at IRMA (Université de Strasbourg), Southwest Jiaotong University (Chengdu), Tsinghua University and Capital Normal University (Beijing). The author warmly thanks the colleagues in these institutions who gave him the occasion to revisit these topics. Finally, thanks to both anonymous referees for a thorough reading which led to some clarifications and the elimination of typos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Chenciner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chenciner, A. (2019). Perturbing a Planar Rotation: Normal Hyperbolicity and Angular Twist. In: Dani, S.G., Papadopoulos, A. (eds) Geometry in History. Springer, Cham. https://doi.org/10.1007/978-3-030-13609-3_11

Download citation

Publish with us

Policies and ethics