Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 120))

  • 821 Accesses

Abstract

This chapter focuses on those theoretical principles which are required to formulate physically correct mathematical closure equations for modelling turbulent flows. The importance of the Galilean invariance in the Newtonian physics is to ensure that the conservation laws of turbulent flow motions remain the same in any two reference frames. Therefore, we devote a particular attention to the Galilean transformation and the derivation of the Galilean invariance of the Reynolds momentum equation (1.43), the Reynolds stress tensor (1.54), the rate-of-strain tensor (1.114) and the generalised Boussinesq hypothesis on the Reynolds stresses (1.113). The principle of Galilean invariance for the Reynolds stress tensor will also be taken into account in the proposal to the new hypothesis on the anisotropic Reynolds stress tensor in Chap. 5. In addition to the Galilean invariance, the consistency of physical dimensions, the coordinate system independence of physical laws and the realisability condition have also been considered as relevant criteria in the mathematical description of the Reynonds stress tensor. The derivations included in the present chapter make an attempt to bring closer a theoretically demanding advanced subject to a wider audience.

Is there any knowledge in the world which is so certain that no reasonable man could doubt it? This question, which at first sight might not seem difficult, is really one of the most difficult that can be asked

—Bertrand Russell, 1912

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkhudarov E (2012) Renormalization group analysis of equilibrium and non-equilibrium charged systems. PhD thesis, University of London, United Kingdom, pp 1–180

    Google Scholar 

  2. Berera A, Hochberg D (2005) Galilean invariance and homogeneous anisotropic randomly stirred flows. Phys Rev E 72(057):301

    Google Scholar 

  3. Biringen S, Reynolds WC (1981) Large-eddy simulation of the shear-free turbulent boundary layer. J Fluid Mech 103:53–63

    Article  Google Scholar 

  4. Cantwell BJ (2002) Introduction to symmetry analysis. Cambridge University Press, Cambridge. ISBN 978-0-521-77740-7

    Google Scholar 

  5. Combrinck ML, Dala LN (2014) Eulerian derivations of non-inertial Navier–Stokes equations. In: 29th congress of the international council of the aeronautical sciences, St. Petersburg, Russia, September 7–12, pp 1–20

    Google Scholar 

  6. Durbin PA, Pettersson Reif BA (2011) Statistical theory and modeling for turbulent flows, 2nd edn. Wiley Ltd, West Sussex. ISBN 978-0-470-68931-8

    Google Scholar 

  7. Girimaji SS (1996) A Galilean invariant explicit algebraic Reynolds stress model for curved flows. NASA contractor report 198340, ICASE report no 96-38, pp 1–26

    Google Scholar 

  8. Guenther S (2005) Symmetry methods for turbulence modeling. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, pp 1–147

    Google Scholar 

  9. Hou TY, Hu X, Hussain F (2013) Multiscale modeling of incompressible turbulent flows. J Comput Phys 232:383–396

    Article  MathSciNet  Google Scholar 

  10. von Kármán T (1930a) Mechanische Ähnlichkeit und Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Gttingen Mathematisch-Physikalische Klasse, pp 58–76

    Google Scholar 

  11. von Kármán T (1930b) Mechanische Ähnlichkeit und Turbulenz. In: Proceedings of the third international congress of applied mechanics. P. A. Norstedt & Sner, Stockholm

    Google Scholar 

  12. von Kármán T (1931) Mechanical similitude and turbulence. National advisory committee for aeronautics (NACA) Technical memorandum no 611, Washington, USA; English Translation by Vanier, J pp 1–21

    Google Scholar 

  13. von Kármán T (1956a) Collected works of Theodore von Krmn. Volume II. 1914–1932, Butterworths Scientific Publications, London, chap Mechanische Ähnlichkeit und Turbulenz, pp 322–336

    Google Scholar 

  14. von Kármán T (1956b) Collected works of Theodore von Krmn. Volume II. 1914–1932, Butterworths Scientific Publications, London, chap Mechanische Ähnlichkeit und Turbulenz, pp 337–346

    Google Scholar 

  15. Leschziner M (2016) Statistical turbulence modelling for fluid dynamics – demystified. Imperial College Press, London

    Google Scholar 

  16. Ling J, Templeton J, Kurzawski A (2016) Reynolds averaged turbulence modeling using deep neural networks with embedded invariance. SAND2016-7345J, pp 1–17

    Article  MathSciNet  Google Scholar 

  17. McComb WD (2014) Homogeneous, isotropic tubrulence. Phenomenology, renormalization, and statistical closures. Oxford University Press, Oxford. ISBN 978-0-19-968938-5

    Google Scholar 

  18. Moin P, Kim J (1982) Numerical investigation of turbulent channel flow. J Fluid Mech 118:341–377

    Article  Google Scholar 

  19. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge. ISBN 978-0-521-59886-6

    Google Scholar 

  20. Razafindralandy D, Hamdouni A, Oberlack M (2007) New turbulence models preserving symmetries. In: Fifth international symposium on turbulence and shear flow phenomena, pp 315–320

    Google Scholar 

  21. Sayed NA, Hamdouni A, Liberge E, Razafindralandy D (2010) The symmetry group of the non-isothermal Navier–Stokes equations and turbulence modelling. Symmetry 2:848–867. https://doi.org/10.3390/sym2020848

    Article  MathSciNet  Google Scholar 

  22. Schumann U (1977) Realizability of Reynolds stress turbulence models. Phys Fluids 20:721–725

    Article  Google Scholar 

  23. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weath Rev 93:99–165

    Article  Google Scholar 

  24. Spalart PR, Speziale CG (1999) A note on constraints in turbulence modelling. J Fluid Mech 391:373–376

    Article  MathSciNet  Google Scholar 

  25. Speziale CG (1985) Galilean invariance of subgrid-scale stress models in the large-eddy simulation of turbulence. J Fluid Mech 156:55–62

    Article  Google Scholar 

  26. Wilcox DC (1993) Turbulence modeling for CFD, 1st edn. DCW Industries Inc, Glendale. ISBN 0-9636051-0-0

    Google Scholar 

  27. Zhou Y, Vahala G (1993) Renormalization group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence. NASA contractor report 191421, ICASE report no 93-1, pp 1–27

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Könözsy .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Könözsy, L. (2019). Theoretical Principles and Galilean Invariance. In: A New Hypothesis on the Anisotropic Reynolds Stress Tensor for Turbulent Flows. Fluid Mechanics and Its Applications, vol 120. Springer, Cham. https://doi.org/10.1007/978-3-030-13543-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13543-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13542-3

  • Online ISBN: 978-3-030-13543-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics