Skip to main content

Using Moment Constraints in GME Estimation

  • Chapter
  • First Online:
Applied Methods for Agriculture and Natural Resource Management

Part of the book series: Natural Resource Management and Policy ((NRMP,volume 50))

  • 348 Accesses

Abstract

In this contribution, we explore the sensitivity of parameter estimates derived through the generalized maximum entropy (GME) approach under alternative specifications of the width of the error term supports. Although many recommend a “three-sigma” rule for setting the width of this term, there can be noticeable differences in the results if it is expanded beyond that, as others in the literature have suggested. We use a Monte Carlo analysis to see how imposing a moment-based condition into the GME problem, as an additional constraint, affects the results. We find that it removes the sensitivity of the parameter estimates to the width of the supports for the error term and that this remains robust even when the data is ill-conditioned. Based on this, we recommend that researchers impose this condition when doing GME-based estimation, to improve the performance of the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Preckel refers to a “reference distribution” when describing the support space, since he is using the cross-entropy formulation to motivate the similarity between GME and the least-squares estimation procedure, in terms of minimizing deviations. However, the “reference” distribution actually used in his discussion is uniform, which makes the Generalized Cross-Entropy (GCE) minimization problem equivalent to the primal GME maximization problem that we use for our discussion, here. So we will avoid confusion of terminology by solely referring to the support space of the parameter—which Preckel suggests should be chosen by placing the OLS estimate at its center and placing values symmetrically on either side that are equal to multiples of the standard error of the OLS estimate (pp. 370 & 373).

References

  • Brooke, A., Kendrick, D., & Meeraus, A. (1988). GAMS: A users’s guide. The Scientific Press.

    Google Scholar 

  • Fernandez, L. (1997). Estimation of wastewater treatment objectives through maximum entropy. Journal of Environmental Economics and Management, 32, 293–308.

    Article  Google Scholar 

  • Ferreira, P. (2013). An application of general maximum entropy to utility. International Journal of Applied Decision Sciences, 6(3), 228–244.

    Article  Google Scholar 

  • Fragaso, R. M., & Carvalho, M. L. (2012). Estimation of joint costs allocation coefficients using the maximum entropy: A case of mediterranean farms. Journal of Quantitative Economics, 10(2), 91–111.

    Google Scholar 

  • Fraser, I. (2000). An application of maximum entropy estimation: The demand for meat in the United Kingdom. Applied Economics, 32(1), 45–59.

    Article  Google Scholar 

  • Gohin, A. (2000). Positive mathematical programming and maximum entropy: Economic tools for applied production analysis. In INRA-ESR-Rennes Economics, Paris.

    Google Scholar 

  • Golan, A., Judge, G., & Miller, D. (1996b). Maximum entropy econometrics: Robust estimation with limited data. New York: Wiley.

    Google Scholar 

  • Golan, A., Judge, G. & Karp, L. (1996b). A maximum entropy approach to estimation and inference in dynamic models or counting fish in the sea using maximum entropy. Journal of Economic Dynamics and Control 20(4): 559–582.

    Google Scholar 

  • Howitt, R. E., & Msangi, S. (2014). Entropy estimation of disaggregate production functions: An application to Northern Mexico. Entropy, 16, 1349–1364. https://doi.org/10.3390/e16031349.

    Article  Google Scholar 

  • Kaplan, J. D., Howitt, R. E., & Farzin, Y. H. (2003). An information theoretic analysis of budget-constrained nonpoint source pollution. Journal of Environmental Economics and Management, 46(1), 106–130.

    Article  Google Scholar 

  • Lansink, A. O., Silva, E., & Stefanou, S. (2001). Inter-firm and intra-firm efficiency measures. Journal of Productivity Analysis, 15, 185–199.

    Article  Google Scholar 

  • Lence, S. H., & Miller, D. J. (1998). Estimation of multi-output production functions with incomplete data: A generalized maximum entropy approach. European Review of Agricultural Economics, 25, 188–209.

    Article  Google Scholar 

  • Leon, Y., Peeters, L., Quinqu, M., & Surry, Y. (1999). The use of maximum entropy to estimate input-output coefficients from regional farm accounting data. Journal of Agricultural Economics, 50(3), 425–439.

    Article  Google Scholar 

  • Marsh, T. L., Mittlehammer, R., & Cardell, N. S. (2001). Generalized maximum entropy analysis of the linear simultaneous equations model. Entropy, 16(2), 825–853.

    Article  Google Scholar 

  • Mittelhammer, R. C., Judge, G. G., & Miller, D. J. (2000). Econometric foundations. New York: Cambridge University Press.

    Google Scholar 

  • Owen, A. (1988). Empirical likelihood confidence ratio confidence intervals for a single functional. Biometrika, 75(2), 237–249.

    Article  Google Scholar 

  • Owen, A. (1991). Empirical likelihood for linear models. The Annals of Statistics, 19, 1725–1747.

    Article  Google Scholar 

  • Paris, Q. (2001, April). MELE: Maximum entropy leuven estimators. Working Paper 01-003. UC Davis: Department of Agricultural and Resource Economics, UCD. Retrieved from https://escholarship.org/uc/item/66q143ht.

  • Paris, Q., & Caputo, M. R. (2001, August). Sensitivity of the GME estimates to support bounds. Working Paper 01–008. Davis: Dept of Agricultural & Resource Economics, University of California.

    Google Scholar 

  • Preckel, P. V. (2001). Least squares and entropy: A penalty function perspective. American Journal of Agricultural Economics, 83(2), 366–377.

    Article  Google Scholar 

  • Pukelsheim, F. (1994). The 3-sigma rule. American statistician, 48(2), 88–91.

    Google Scholar 

  • Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. Annals of Statistics, 22(1), 300–325.

    Article  Google Scholar 

  • Van Akkeren, Judge, M. G., & Mittelhammer, R. (2002). Generalized moment based estimation and inference. Journal of Econometrics 107 (1–2): 127–148.

    Google Scholar 

  • Wu, X. (2009). A weighted generalized maximum entropy estimator with a data-driven weight. Entropy, 11. https://doi.org/10.3390/e11040917.

  • Zhang, X., & Fan, S. (2001). Estimating crop-specific production technologies in chinese agriculture: A generalized maximum entropy approach. American Journal of Agricultural Economics, 83(2), 378–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard E. Howitt .

Editor information

Editors and Affiliations

Appendix

Appendix

General Derivation for Basic GME Problem

We can write the GME problem as

$$\begin{aligned} & \hbox{max} - \sum\limits_{i = 1}^{2I + 1} {p_{i}^{b} \ln p_{i}^{b} } - \sum\limits_{j = 1}^{N} {\sum\limits_{k = 1}^{2K + 1} {p_{jk}^{e} \ln p_{jk}^{e} } } \hfill \\ &{\text{s.t.}}\quad \quad y_{j} = x_{j} \left( {\sum\limits_{i = 1}^{2I + 1} {p_{i}^{b} z_{i}^{b} } } \right) + \sum\limits_{k = 1}^{2K + 1} {p_{jk}^{e} z_{k}^{e} } \quad \forall j \hfill \\ & {\text{where}}\;\;z_{k}^{e} \in \left\{ {z_{1}^{e} , \ldots z_{K + 1}^{e} , \ldots ,z_{2K + 1}^{e} } \right\},z_{K + 1}^{e} = 0\;\quad {\text{and}}\quad - z_{k}^{e} = z_{2(K + 1) - k}^{e} \quad \forall k \ne K + 1 \hfill \\ \end{aligned}$$

which can be rewritten as

$$\begin{aligned} & \hbox{max} - \left[ {\sum\limits_{i = 1}^{I} {p_{i}^{b} \ln p_{i}^{b} } + (1 - \sum\limits_{i \ne I + 1} {p_{i}^{b} } )\ln (1 - \sum\limits_{i \ne I + 1} {p_{i}^{b} } ) + \sum\limits_{i = I + 2}^{2I + 1} {p_{i}^{b} \ln p_{i}^{b} } } \right] \\ & \quad - \sum\limits_{j = 1}^{N} {\left[ {\sum\limits_{k = 1}^{K} {p_{jk}^{e} \ln p_{jk}^{e} } + (1 - \sum\limits_{k \ne K + 1} {p_{jk}^{e} } )\ln (1 - \sum\limits_{k \ne K + 1} {p_{jk}^{e} } ) + \sum\limits_{k = K + 2}^{2K + 1} {p_{jk}^{e} \ln p_{jk}^{e} } } \right]} \\ & \quad {\text{s}} . {\text{t}} .\\ & \quad y_{j} = x_{j} \left( {\sum\limits_{i = 1}^{I} {p_{i}^{b} z_{i}^{b} } + (1 - \sum\limits_{i \ne I + 1} {p_{i}^{b} } )z_{I + 1}^{b} + \sum\limits_{i = I + 2}^{2I + 1} {p_{i}^{b} z_{i}^{b} } } \right) \\ &\quad \quad \quad+ \left( {\sum\limits_{k = 1}^{K} {p_{jk}^{e} z_{k}^{e} } + (1 - \sum\limits_{k \ne K + 1} {p_{jk}^{e} } )z_{K + 1}^{e} + \sum\limits_{k = K + 2}^{2K + 1} {p_{jk}^{e} z_{k}^{e} } } \right)\quad \forall j \\ \end{aligned}$$

Which give the first-order conditions

$$\begin{aligned} \frac{\partial L}{{\partial p_{i}^{b} }} & = - \left( {1 + \ln p_{i}^{b} } \right) + \ln (1 - \sum\limits_{{i^{\prime} \ne I + 1}} {p_{{i^{\prime}}}^{b} } ) + 1 - \sum\limits_{j = 1}^{N} {\lambda_{j} x_{j} \left( {z_{i}^{b} - z_{I + 1}^{b} } \right)} = 0\quad \forall i \ne I + 1 \\ \frac{\partial L}{{\partial p_{jk}^{e} }} & = - \left( {1 + \ln p_{jk}^{e} } \right) + \ln (1 - \sum\limits_{{k^{\prime} \ne K + 1}} {p_{{jk^{\prime}}}^{e} } ) + 1 - \lambda_{j} \left( {z_{k}^{e} - z_{K + 1}^{e} } \right) = 0\quad \forall j,k \ne K + 1 \\ \end{aligned}$$

taking the k = 1 and k = 2 K + 1 cases, we can derive the result \(\lambda_{j} = \frac{1}{{z_{1}^{e} - z_{2K + 1}^{e} }}\ln \left( {\frac{{p_{j,2K + 1}^{e} }}{{p_{j,1}^{e} }}} \right)\) and substitute it into the following expression derived from the FOCs for \(p_{i}^{b}\)

$$\begin{aligned} \ln p_{{i^{\prime } }}^{b} - \ln p_{i}^{b} & = \sum\limits_{{j = 1}}^{N} {\lambda _{j} x_{j} \left( {z_{i}^{b} - z_{{i^{\prime } }}^{b} } \right)\quad } \forall i,i^{\prime } \in {\mathbf{I}} = \left\{ {1, \ldots ,I,I + 2, \ldots ,2I + 1} \right\}, \\ & \qquad\qquad\qquad \qquad \qquad \qquad \qquad \qquad I + 1 \notin {\mathbf{I}} \\ \end{aligned}$$

And we obtain \(\frac{{p_{{i^{\prime}}}^{b} }}{{p_{i}^{b} }} = \left[ {\prod\limits_{j = 1}^{N} {\left( {\frac{{p_{j,2K + 1}^{e} }}{{p_{j,1}^{e} }}} \right)^{{x_{j} }} } } \right]^{{\frac{{z_{i}^{b} - z_{{i^{\prime}}}^{b} }}{{z_{1}^{e} - z_{2K + 1}^{e} }}}} \quad \forall i,i^{\prime} \in {\mathbf{I}}\;\quad {\text{and}}\quad I + 1 \notin {\mathbf{I}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Howitt, R.E., Msangi, S. (2019). Using Moment Constraints in GME Estimation. In: Msangi, S., MacEwan, D. (eds) Applied Methods for Agriculture and Natural Resource Management. Natural Resource Management and Policy, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-13487-7_8

Download citation

Publish with us

Policies and ethics