Advertisement

EEG Channel Relevance Analysis Using Maximum Mean Discrepancy on BCI Systems

  • D. F. Luna-Naranjo
  • J. V. Hurtado-Rincon
  • D. Cárdenas-PeñaEmail author
  • V. H. Castro
  • H. F. Torres
  • G. Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)

Abstract

Brain-Computer Interfaces bridge the communication between brains and devices. Channel selection as a stage for developing BCI systems allows reducing costs and improve the overall performance. This paper proposes a relevance analysis based on the maximum mean discrepancy as the distance function between a pair of single-channel trials, termed rMMD. The proposed rMMD starts with a trial embedding that highlights temporal dynamics, and ends with a channel ranking according to a designed relevance function. The function relies on the within and between class distances to quantify the discrimination capability of each channel. We evaluate the rMMD on a bi-class motor-imagery (MI) dataset holding 64 channels and more than 40 subjects. In comparison with no channel selection and a heuristic approach, our proposed relevance analysis statistically improves the classification of MI tasks with a reduced set of channels.

Keywords

Channel selection Time-series relevance analysis Brain computer interface 

Notes

Acknowledgment

This research was supported by the research project 36706 “BrainScore: Sistema compositivo, gráfico y sonoro creado a partir del comportamiento frecuencial de las señales cerebrales”, funded by Universidad de Caldas and Universidad Nacional de Colombia.

References

  1. 1.
    Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015(1), 66 (2015).  https://doi.org/10.1186/s13634-015-0251-9CrossRefGoogle Scholar
  2. 2.
    Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Dominguez, G.: Unsupervised kernel function building using maximization of information potential variability. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 335–342. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12568-8_41CrossRefGoogle Scholar
  3. 3.
    Cho, H., Ahn, M., Ahn, S., Kwon, M., Jun, S.C.: EEG datasets for motor imagery brain-computer interface. GigaScience 6(7), 1–8 (2017).  https://doi.org/10.1093/gigascience/gix034CrossRefGoogle Scholar
  4. 4.
    Dai, S., Wei, Q.: Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces. J. Integr. Neurosci. 16(3), 241–254 (2017).  https://doi.org/10.3233/JIN-170017CrossRefMathSciNetGoogle Scholar
  5. 5.
    Edelman, B.J., Baxter, B., He, B.: EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans. Biomed. Eng. 63(1), 4–14 (2016).  https://doi.org/10.1109/TBME.2015.2467312CrossRefGoogle Scholar
  6. 6.
    Franklin Alex Joseph, A., Govindaraju, C.: Channel selection using glow swarm optimization and its application in line of sight secure communication. Clust. Comput., 1–8 (2017).  https://doi.org/10.1007/s10586-017-1177-9
  7. 7.
    Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B., Smola, A.J.: A kernel method for the two-sample problem, May 2008Google Scholar
  8. 8.
    Handiru, V.S., Prasad, V.A.: Optimized bi-objective EEG channel selection and cross-subject generalization with brain-computer interfaces. IEEE Trans. Hum. Mach. Syst. 46(6), 777–786 (2016).  https://doi.org/10.1109/THMS.2016.2573827CrossRefGoogle Scholar
  9. 9.
    Kee, C.Y., Ponnambalam, S.G., Loo, C.K.: Multi-objective genetic algorithm as channel selection method for P300 and motor imagery data set. Neurocomputing 161, 120–131 (2015).  https://doi.org/10.1016/j.neucom.2015.02.057CrossRefGoogle Scholar
  10. 10.
    Meng, J., Zhang, S., Bekyo, A., Olsoe, J., Baxter, B., He, B.: Noninvasive electroencephalogram based control of a robotic arm for reach and grasp tasks. Sci. Rep. 6(1), 38565 (2016).  https://doi.org/10.1038/srep38565CrossRefGoogle Scholar
  11. 11.
    Qiu, Z., Jin, J., Lam, H.K., Zhang, Y., Wang, X., Cichocki, A.: Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 207, 519–527 (2016).  https://doi.org/10.1016/j.neucom.2016.05.035CrossRefGoogle Scholar
  12. 12.
    Yang, H., Guan, C., Wang, C.C., Ang, K.K.: Maximum dependency and minimum redundancy-based channel selection for motor imagery of walking EEG signal detection. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 1187–1191. IEEE, May 2013.  https://doi.org/10.1109/ICASSP.2013.6637838

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • D. F. Luna-Naranjo
    • 1
  • J. V. Hurtado-Rincon
    • 1
  • D. Cárdenas-Peña
    • 1
    Email author
  • V. H. Castro
    • 2
  • H. F. Torres
    • 2
  • G. Castellanos-Dominguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaManizalesColombia
  2. 2.Universidad de CaldasManizalesColombia

Personalised recommendations